Answer:
0.36 M
Explanation:
There is some info missing. I think this is the complete question.
<em>Suppose a 250 mL flask is filled with 0.30 mol of N₂ and 0.70 mol of NO. The following reaction becomes possible:
</em>
<em>N₂(g) +O₂(g) ⇄ 2 NO(g)
</em>
<em>The equilibrium constant K for this reaction is 7.70 at the temperature of the flask. Calculate the equilibrium molarity of O₂. Round your answer to two decimal places.</em>
<em />
Initially, there is no O₂, so the reaction can only proceed to the left to attain equilibrium. The initial concentrations of the other substances are:
[N₂] = 0.30 mol / 0.250 L = 1.2 M
[NO] = 0.70 mol / 0.250 L = 2.8 M
We can find the concentrations at equilibrium using an ICE Chart. We recognize 3 stages (Initial, Change, and Equilibrium) and complete each row with the concentration or change in the concentration.
N₂(g) +O₂(g) ⇄ 2 NO(g)
I 1.2 0 2.8
C +x +x -2x
E 1.2+x x 2.8 - 2x
The equilibrium constant (K) is:
![K=7.70=\frac{[NO]^{2}}{[N_{2}][O_{2}]} =\frac{(2.8-2x)^{2} }{(1.2+x).x}](https://tex.z-dn.net/?f=K%3D7.70%3D%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%20%3D%5Cfrac%7B%282.8-2x%29%5E%7B2%7D%20%7D%7B%281.2%2Bx%29.x%7D)
Solving for x, the positive one is x = 0.3601 M
[O₂] = 0.3601 M ≈ 0.36 M
Answer:
a) Fe(s) + Ni^2+(aq) ----> Fe^2+(aq) + Ni(s)
b) no reaction
c) no reaction
d) 2Mg(s) + 2H2O(l)-----> 2Mg^2+(aq) + O2(g) +4H^+(aq)
e) no reaction
Explanation:
It is important to say here that the ability of a particular chemical specie to displace another chemical specie is dependent on the relative standard reduction potentials of the species involved.
All the reactions stated above are redox reactions. Let us take reaction E as an example. Mg^2+ has a reduction potential of -2.37 V while Cr^3+ has a reduction potential of -0.74V. Since the reduction potential of magnesium is more negative than that of chromium, there is no reaction when a piece of chromium metal is dipped into a solution of Mg^2+.
Similarly, though metals displace hydrogen gas from dilute acids, metals that are less than hydrogen in the reactivity series cannot do that. This explains why there is no reaction when copper and silver are dipped into dilute acid solutions.
Reaction occurs when iron is dipped into a nickel solution because the reduction potential of Fe^2+ is far more negative than that of Ni^2+.
I think it would be 1, 4, 5! Also I love your profile picture!