A is the answer............ If you plot it on a graph, it shows a square.
Answer: y=-2x+5
Step-by-step explanation:
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
The equation of the hyperbola is : 
The center of a hyperbola is located at the origin that means at (0, 0) and one of the focus is at (-50, 0)
As both center and the focus are lying on the x-axis, so the hyperbola is a horizontal hyperbola and the standard equation of horizontal hyperbola when center is at origin:
The distance from center to focus is 'c' and here focus is at (-50,0)
So, c= 50
Now if the distance from center to the directrix line is 'd', then

Here the directrix line is given as : x= 2304/50
Thus, 
⇒ 
⇒ a² = 2304
⇒ a = √2304 = 48
For hyperbola, b² = c² - a²
⇒ b² = 50² - 48² (By plugging c=50 and a = 48)
⇒ b² = 2500 - 2304
⇒ b² = 196
⇒ b = √196 = 14
So, the equation of the hyperbola is : 