1) y=(7/2)x-2.
Slope is the coefficient of x, that is 7/2
Intercept x is the value of x when y = 0 ==> 0=(7/2) X - 2==> 7/2x=2 &x=4/7
so intercept x, (4/7,0)
Intercept y is the value of y when x=0 ==> y= (7/2).(0) - 2 ==> y = 2
and so intercept y, (0,-2)
Now you will follow the same logic to find the are same questions
2) y= -6x + 3 ==>Slope= -6, Intercept x =1/2 & intercept y=3
3) y=-5 has a slope 0 (it doesn't exist). The graph is a line // to x-axis at y=-5
4)y=(6/5)x + 1:==>Slope= -5/6, Intercept x =-5/6 & intercept y=1
5) y=(1/4)x + 2 ==>Slope= 1/4, Intercept x =-8 & intercept y=2
6) x=5, this ligne is // to y axis at x=-5
Did you ever do this if so do you have an email I can message you on. I've been stuck on this.
Answer: 1 inch
Volume of the cylinder = πr²h
Volume of the cone = 1/3πr²h
If the radius are the same for both the cone and the cylinder, then the liquid will reach 1/3 of its height in the cylinder compared to the cone.
Height = 1/3 x 3 inches
Height = 1 inch
----------------------------------------------------------------------------------------
Answer: The height of the cylinder will be 1 inch.
----------------------------------------------------------------------------------------
Answer:
<em><u>1</u></em><em><u>)</u></em><em><u>8</u></em><em><u>&</u></em><em><u>3</u></em><em><u>/</u></em><em><u>4</u></em><em><u> </u></em><em><u>CUP</u></em><em><u> </u></em><em><u>FLOUR</u></em>
<em><u>2</u></em><em><u>)</u></em><em><u>26</u></em><em><u> </u></em><em><u>KIDS</u></em><em><u> </u></em><em><u>CAN</u></em><em><u> </u></em><em><u>GO</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em>
Step-by-step explanation:
1) one batch=2 1/2 cup flour
therefore batch required in 3 1/2 batch= 5/2×7/2=35/4
=8&3/4cup flour
2)No. of kids can go for $60=8
therefore,no. of kids can go in $1=8/60
Therefore,no. of kids can go in $195=8/60×195=26 kids.
There are an infinite number of possibilities, and not enough information
to decide which possibility is really the one inside the function machine.
Here are a few. Each of these gives the result that you described,
and there are an infinite number of others:
f(x) = x
f(x) = 2x + 1
f(x) = 10x + 9
f(x) = x² - 2
f(x) = 7x² - 8
f(x) = 31x³ + 30
f(x) = log( |x| ) - 1
f(x) = ln( |x| ) - 1
f(x) = x tan(45°)
.
.
etc.