Answer:
1.013 s
Explanation:
You can solve this problem using the equations for constant acceleration motion. The velocity at the bottom of the window can be found using this expression:

the gravity is negative as it opposes the movement.

Now, the time elapsed before the ball reappears is 2 times the time that it takes for the ball to go from the bottom of the window, reach maximum height, and reach again the bottom of the window, minus 2 times the time that it takes for the ball to travel from the top to the bottom of the window. The time that takes to the ball to reach maximum height, or in other words, to time that takes for the velocity of the ball to go from vo to 0m/s:

Then:

Answer:
Explanation:
Voltage = 12 (the two batteries are in series and the voltage adds).
Resistance = 3 ohms
I = V / R
I = 12/3
I = 4 amperes.
None of the answers are the right ones. If there is a fifth one that reads 4 amperes then it is the correct answer.
Answer:
P and S waves slow down when they reach this layer. The asthenosphere, also known as the magma chamber, is the uppermost component of the mantle. This layer is partially molten and is a ductile zone in a tectonically poor state.
It's almost hard and seismic waves move through the asthenosphere at a slow rate. The fragile lithosphere and the uppermost portion of the asthenosphere are assumed to be rigid.
seismic waves travel more quickly through denser materials and therefore generally travel more quickly with the depth it moves more slowly through a liquid than a solid. Molten areas within the Earth slow down P waves and stop S waves because their shearing motion cannot be transmitted through a liquid. Partially molten areas may slow down the P waves and attenuate or weaken S waves.
hope this helps...