Answer:
The disadvantage is that convex mirror is that they make it appear like those objects are at a more noteworthy distance than they actually are. It always gives a virtual, erect and a diminished image.
Explanation:
Answer:
0.2286 m, 0.686 m and 1,143 m
therefore we see that there is respect even where the intensity is minimal
Explanation:
Destructive interference to the two speakers is described by the expression
Δr = (2n +1) λ/2
where r is the distance, λ the wavelength and n an integer indicating the order of the interference
let's locate the origin on the left speaker
let's find the wavelength with the equation
v = λ f
λ = v / f
we substitute
Δr = (2n + 1) v / 2f
let's calculate for difference values of n
Δr = (2n +1) 343/(2 750)
Δr = (2n + 1) 0.2286
we locate the different values for a minimum of interim
n Δr (m)
0 0.2286
1 0.686
2 1,143
therefore we see that there is respect even where the intensity is minimal
Answer:
a) αA = 4.35 rad/s²
αB = 1.84 rad/s²
b) t = 3.7 rad/s²
Explanation:
Given:
wA₀ = 240 rpm = 8π rad/s
wA₁ = 8π -αA*t₁
The angle in B is:
The velocity at the contact point is equal to:
Matching both expressions:
b) The time during which the disks slip is:
a) The angular acceleration of each disk is
B. secondary waves aka shear waves
Answer:
6.1 km
Explanation:
Given that a plane travels 4.0 km at an angle of 25◦ to the ground, then changes direction and travels 10 km at an angle of 16◦ to the ground. What is the magnitude of the plane's total displacement? Answer in units of km
The magnitude of the total displacement D can be calculated by using cosine formula
Ø = 25 - 16 = 9 degree
D^2 = 4^2 + 10^2 - 2 × 4 × 10 × cos 9
D^2 = 16 + 100 - 80cos9
D^2 = 116 - 79.02
D = sqrt( 36.98)
D = 6.1 m
Therefore, the magnitude of the plane's total displacement is 6.1 km