<h2>
Law 1:</h2><h3>An object already in motion stays in motion, unless acted upon by a force.</h3><h3 /><h2>Law 2:</h2><h3>

</h3><h3>f = forces on an object</h3><h3>m = mass of that object</h3><h3>a = acceleration of that object</h3><h3 /><h2>Law 3:</h2><h3>Everything has an equal and opposite reaction.</h3><h3 /><h3>Hope this helps!</h3>
Answer:
The net force = 0
Explanation:
The given information includes;
The mass of the crate = 250 kg
The way the helicopter lifts the crate = Uniformly (constant rate (speed), no acceleration)
In order to pull the crate upwards, the helicopter has to provide a force equivalent to the weight of the crate keeping the helicopter on the ground.
The weight of the crate = The mass of the crate × The acceleration due gravity acting on the crate
The weight of the crate,
↓ = 250 kg × 9.81 m/s² = 2,452.5 N
The force the helicopter should provide to just lift the crate,
↑ = The weight of the crate = 2,452.5 N
The net force,
=
↑ -
↓ = 2,452.5 N - 2,452.5 N = 0
The net force = 0.
Answer:
The current drawn by the motor from the line is 4.68 A.
Explanation:
Given that,
Internal resistance of the dc motor, r = 3.2 ohms
Voltage, V = 120 V
Emf in the motor, 
We need to find the current drawn by the motor from the line. A dc motor with its rotor and field coils connected in series, applying loop rule we get :

I is current drawn by the motor

So, the current drawn by the motor from the line is 4.68 A. Hence, this is the required solution.
Answer:
The horizontal component is zero.
The vertical component is 
Explanation:
Given that,
The lizard climb 7m directly up on a tree.
We know that,
The horizontal component is

The vertical component is

If the lizard climb 7m directly up on a tree then,
We need to find the components
Using given data
The horizontal component of lizard is

The vertical component is

Hence, The horizontal component is zero.
The vertical component is 