The center is at origin O(0,0).
If it contains the point, P(-8,6), then the radius r is, by Pythagoras theorem,
r=sqrt((-8)^2+6^2)=10
The general equation of a circle at centre (xc,yc) with radius r is given by
(x-xc)^2+(y-yc)^2=r^2
Substituting r=10, (xc,yc)=(0,0)
the resulting equation is therefore
(x-0)^2+(y-0)^2=10^2
or simply
x^2+y^2=100
Answer: 1
Step-by-step explanation:
From the given picture, it can be seen that there is a plane H on which two pints J and K are located.
One of the Axiom in Euclid's geometry says that <em>"Through any given two points X and Y, only one and only one line can be drawn "</em>
Therefore by Axiom in Euclid's geometry , for the given points J and K in plane H , only one line can be drawn through points J and K.
I have to do a lot of stuff to do this in the time of time I have to do a lot of work to do this really
If y=8-x then you can plug that into the equation like 7=2-(8-x). When you distribute the equation becomes 7=2-8+x. Once you combine like terms the equation becomes 7=-6+x. Then you subtract 6 from both sides, which gives you 13=x.
To find y just put 13 where x was in the first equation. Y=8-13.
Y=-5
X=13
We know that
<span>Figures can be proven similar if one, or more, similarity transformations (reflections, translations, rotations, dilations) can be found that map one figure onto another.
In this problem to prove circle 1 and circle 2 are similar, a translation and a scale factor (from a dilation) will be found to map one circle onto another.
</span>we have that
<span>Circle 1 is centered at (4,3) and has a radius of 5 centimeters
</span><span> Circle 2 is centered at (6,-2) and has a radius of 15 centimeters
</span>
step 1
<span>Move the center of the circle 1 onto the center of the circle 2
</span>the transformation has the following rule
(x,y)--------> (x+2,y-5)
so
(4,3)------> (4+2,3-5)-----> (6,-2)
so
center circle 1 is now equal to center circle 2
<span>The circles are now concentric (they have the same center)
</span>
step 2
A dilation is needed to increase the size of circle 1<span> to coincide with circle 2
</span>
scale factor=radius circle 2/radius circle 1-----> 15/5----> 3
radius circle 1 will be=5*scale factor-----> 5*3-----> 15 cm
radius circle 1 is now equal to radius circle 2
A translation, followed by a dilation<span> will map one circle onto the other, thus proving that the circles are similar</span>