4 moles of hydrogen = 4 * 1.008 = 4.032 grams
1 mole of helium = 4.003 grams
Difference is 4.032 - 4.003
= 0.029 g
a) before addition of any KOH :
when we use the Ka equation & Ka = 4 x 10^-8 :
Ka = [H+]^2 / [ HCIO]
by substitution:
4 x 10^-8 = [H+]^2 / 0.21
[H+]^2 = (4 x 10^-8) * 0.21
= 8.4 x 10^-9
[H+] = √(8.4 x 10^-9)
= 9.2 x 10^-5 M
when PH = -㏒[H+]
PH = -㏒(9.2 x 10^-5)
= 4
b)After addition of 25 mL of KOH: this produces a buffer solution
So, we will use Henderson-Hasselbalch equation to get PH:
PH = Pka +㏒[Salt]/[acid]
first, we have to get moles of HCIO= molarity * volume
=0.21M * 0.05L
= 0.0105 moles
then, moles of KOH = molarity * volume
= 0.21 * 0.025
=0.00525 moles
∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525
and when the total volume is = 0.05 L + 0.025 L = 0.075 L
So the molarity of HCIO = moles HCIO remaining / total volume
= 0.00525 / 0.075
=0.07 M
and molarity of KCIO = moles KCIO / total volume
= 0.00525 / 0.075
= 0.07 M
and when Ka = 4 x 10^-8
∴Pka =-㏒Ka
= -㏒(4 x 10^-8)
= 7.4
by substitution in H-H equation:
PH = 7.4 + ㏒(0.07/0.07)
∴PH = 7.4
c) after addition of 35 mL of KOH:
we will use the H-H equation again as we have a buffer solution:
PH = Pka + ㏒[salt/acid]
first, we have to get moles HCIO = molarity * volume
= 0.21 M * 0.05L
= 0.0105 moles
then moles KOH = molarity * volume
= 0.22 M* 0.035 L
=0.0077 moles
∴ moles of HCIO remaining = 0.0105 - 0.0077= 8 x 10^-5
when the total volume = 0.05L + 0.035L = 0.085 L
∴ the molarity of HCIO = moles HCIO remaining / total volume
= 8 x 10^-5 / 0.085
= 9.4 x 10^-4 M
and the molarity of KCIO = moles KCIO / total volume
= 0.0077M / 0.085L
= 0.09 M
by substitution:
PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)
∴PH = 8.38
D)After addition of 50 mL:
from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.
the molarity of KCIO = moles KCIO / total volume
= 0.0105mol / 0.1 L
= 0.105 M
when Ka = KW / Kb
∴Kb = 1 x 10^-14 / 4 x 10^-8
= 2.5 x 10^-7
by using Kb expression:
Kb = [CIO-] [OH-] / [KCIO]
when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]
Kb = [OH-]^2 / [KCIO]
2.5 x 10^-7 = [OH-]^2 /0.105
∴[OH-] = 0.00016 M
POH = -㏒[OH-]
∴POH = -㏒0.00016
= 3.8
∴PH = 14- POH
=14 - 3.8
PH = 10.2
e) after addition 60 mL of KOH:
when KOH neutralized all the HCIO so, to get the molarity of KOH solution
M1*V1= M2*V2
when M1 is the molarity of KOH solution
V1 is the total volume = 0.05 + 0.06 = 0.11 L
M2 = 0.21 M
V2 is the excess volume added of KOH = 0.01L
so by substitution:
M1 * 0.11L = 0.21*0.01L
∴M1 =0.02 M
∴[KOH] = [OH-] = 0.02 M
∴POH = -㏒[OH-]
= -㏒0.02
= 1.7
∴PH = 14- POH
= 14- 1.7
= 12.3
A thermocouple is a sensor used to measure temperature. Thermocouples are made with two wires of different metals, joined together at one end to form a junction. ... Naturally, a thermocouple outputs a millivolt signal, therefore, as the resistance changes, the change in voltage can be measured.
-nat geo
<u>Answer:</u> The standard heat for the given reaction is -138.82 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(3\times \Delta H_f_{(CH_4(g))})+(1\times \Delta H_f_{(CO_2(g))})+(4\times \Delta H_f_{(NH_3(g))})]-[(4\times \Delta H_f_{(CH_3NH_2(g))})+(2\times \Delta H_f_{(H_2O(l))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28CH_3NH_2%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(3\times (-74.8))+(1\times (-393.5))+(4\times (-46.1))]-[(4\times (-22.97))+(2\times (-285.8))]\\\\\Delta H_{rxn}=-138.82kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%28-74.8%29%29%2B%281%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-46.1%29%29%5D-%5B%284%5Ctimes%20%28-22.97%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-138.82kJ)
Hence, the standard heat for the given reaction is -138.82 kJ