The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
The balanced reaction of the given condition as follow :
Ca(OH)₂ + 2HC₂H₃O₂ ------> Ca(C₂H₃O₂)₂ + 2H₂O
from the equation it is clear that stoichiometry of Ca(OH)₂ is 1 and the stoichiometry of HC₂H₃O₂ is 2. therefore the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
Thus, The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
To learn more about stoichiometry here
brainly.com/question/13145466
#SPJ4
the answer is 1345 or 5134
Explanation:
hope that help
First a balanced reaction equation must be established:

→

Now if mass of aluminum = 145 g
the moles of aluminum = (MASS) ÷ (MOLAR MASS) = 145 g ÷ 30 g/mol
= 4.83 mols
Now the mole ratio of Al : O₂ based on the equation is 4 : 3
[
4Al +
3 O₂ → 2 Al₂O₃]
∴ if moles of Al = 4.83 moles
then moles of O₂ = (4.83 mol ÷ 4) × 3
=
3.63 mol (to 2 sig. fig.)
Thus it can be concluded that
3.63 moles of oxygen is needed to react completely with 145 g of aluminum.
Answer:
2.67 x 10⁷km
Explanation:
Given parameters:
Time of arrival of p-waves = 2: 10: 00
Time of arrival of s-waves = 2: 15: 20
Unknown:
Distance of wave from epicenter = ?
Solution:
To find the distance of the wave from the epicenter;
Distance = 3 x 10⁸ x time interval
Time interval = Time of arrival of p-waves - Time of arrival of s-waves
= 2: 10: 00 - 2: 15: 20
= 5min 20s
= 320s
Now, we need to convert the time to hrs;
3600s = 1hr
320s =
=
hr
So,
Distance = 3 x 10⁸ x
= 2.67 x 10⁷km