Answer:
0.00757 grams
Explanation:
Find the molar mass of the compound: which is 60.05.
The molar mass is basically just the sum of all the atomic masses of each of the elements.
Then multiply the molar mass by the number of moles in the compound, which is 1.26 x 10^-4 moles.
Your answer should be 0.00757 grams.
They turn litmus paper blue
Answer: I think the answer is 1
i just learned this about two weeks ago
Explanation:
Answer:
See explanation
Explanation:
In looking at molecules to determine whether they are polar or not we have to look at two things basically;
i) presence of polar bonds
ii) geometry of the molecule
Now, we know that CCI2F2 is a tetrahedral molecule, but the molecule is not symmetrical. It has four polar bonds that are not all the same hence the molecule is polar.
In an electric field, polar molecules orient themselves in such a way that the positive ends of the molecule are being attracted to the negative plate while the negative ends of the molecules are attracted to the positive plate.
So the positive ends of CCI2F2 are oriented towards the negative plate of the field while the negative ends of CCI2F2 are oriented towards the positive ends of the field.
Answer:
7.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ produced by the decomposition of 5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Therefore, 5 moles of KClO₃ will decompose to produce = (5 × 3)/ 2 = 7.5 moles of O₂.
Thus, 7.5 moles of O₂ were obtained from the reaction.