Answer:
Here is one way: Add water to the mixture. Only the sugar dissolves. This is a physical change.
Explanation:
The sugar would dissolve in water. You could then pour off the solution and wash the remaining sand with a bit more water. Heat the water to evaporate it from the sugar, and the two are separated.
Answer:
V₂ → 106.6 mL
Explanation:
We apply the Ideal Gases Law to solve the problem. For the two situations:
P . V = n . R . T
Moles are still the same so → P. V / R. T = n
As R is a constant, the formula to solve this is: P . V / T
P₁ . V₁ / T₁ = P₂ .V₂ / T₂ Let's replace data:
(1.20 atm . 73mL) / 112°C = (0.55 atm . V₂) / 75°C
((87.6 mL.atm) / 112°C) . 75°C = 0.55 atm . V₂
58.66 mL.atm = 0.55 atm . V₂
58.66 mL.atm / 0.55 atm = V₂ → 106.6 mL
1.An emotional strain and 2. a reaction to a complex emotional state.
Answer:- Mole ratio of D to A is 4:3.
Explanations:- Mole ratio for a chemical reaction is the ratio of the coefficients.
The given generic chemical reaction is:

The numbers written in front of each chemical species in the chemical reaction are their moles. For the given generic chemical reaction the coefficient of A is 3 and that of B is 1. So, the mole ratio of A to B is 3:1.
Similarly if we want to write the mole ratio of C to D then it is 1:4.
We are asked to write the mole ratio of D to A. So, like the other ratios, the mole ratio of D to A is 4:3 as the coefficient of D is 4 and A is 3.
Explanation:
(a) As the given chemical reaction equation is as follows.

So, when we double the amount of hypochlorite or iodine then the rate of the reaction will also get double. And, this reaction is "first order" with respect to hypochlorite and iodine.
Hence, equation for rate law of reaction will be as follows.
Rate =
(b) Since, the rate equation is as follows.
Rate =
Let us assume that (
)
Putting the given values into the above equation as follows.

K =
=
Hence, the value of rate constant for the given reaction is
.
(c) Now, we will calculate the rate as follows.
Rate =
=
= 
Therefore, rate when
M and
M is
.