Answer:
When x = 0, then y = -2
When y = 0, then x = 4
Step-by-step explanation:
We are given with the following equation;
x - 2y = 4
Now, we have to find the respective values of x and y for each value of x = 0 and y = 0.
Firstly, putting the value of x = 0;
x - 2y = 4
0 - 2y = 4
-2y = 4
y =
= -2
This means that when x = 0, then y = -2.
Similarly, putting the value of y = 0;
x - 2y = 4

x - 0 = 4
x = 4
This means that when y = 0, then x = 4.
Answer:
120 + 3.5x≤ 190
Step-by-step explanation:
Add up all the costs
80+ 10+10+20 + 3.50x where x is the number of cupcakes
Combine like terms
120 + 3.5x
This must be less than or equal to 190
120 + 3.5x≤ 190
Answer:
![\displaystyle Yes \\ Range: Set-Builder\:Notation → [f(x)|-2 ≤ f(x) ≤ 4] \\ Interval\:Notation → [-2, 4] \\ \\ Domain: Set-Builder\:Notation → [x|0 ≤ x ≤ 7] \\ Interval\:Notation → [0, 7]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Yes%20%5C%5C%20Range%3A%20Set-Builder%5C%3ANotation%20%E2%86%92%20%5Bf%28x%29%7C-2%20%E2%89%A4%20f%28x%29%20%E2%89%A4%204%5D%20%5C%5C%20Interval%5C%3ANotation%20%E2%86%92%20%5B-2%2C%204%5D%20%5C%5C%20%5C%5C%20Domain%3A%20Set-Builder%5C%3ANotation%20%E2%86%92%20%5Bx%7C0%20%E2%89%A4%20x%20%E2%89%A4%207%5D%20%5C%5C%20Interval%5C%3ANotation%20%E2%86%92%20%5B0%2C%207%5D)
Step-by-step explanation:
Just by looking at the graph vertically and horisontally, you can tell what the range and domain is, depending on whether the segments are <em>closed</em> or <em>opened</em>.
* This is a function because it passes the <em>vertical</em><em> </em><em>line test</em>.
** This is kind of like a sine wave.
I am joyous to assist you anytime.
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → C = π - (A + B)
→ sin C = sin(π - (A + B)) cos C = sin(π - (A + B))
→ sin C = sin (A + B) cos C = - cos(A + B)
Use the following Sum to Product Identity:
sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]
cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]
Use the following Double Angle Identity:
sin 2A = 2 sin A · cos A
<u>Proof LHS → RHS</u>
LHS: (sin 2A + sin 2B) + sin 2C




![\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%202%5Csin%20C%5Ccdot%20%5B%5Ccos%20%28A-B%29%2B%5Ccos%20%28A%2BB%29%5D)


LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C 