The correct answer to the question above is fussion of uranium. The fussion of uranium is the only type of reaction in which produces the most dangerous radioactive waste. The fusion of uranium means the binding of their atoms and produce a radioactive waste.
We know that Weighted atomic mass of Element is Calculated based upon their existence of isotopes and the Relative abundance of these isotopes.
Given that the Element X is Composed of :
Isotope Relative abundance Atomic Mass
⁵⁵X 70% 55
⁵⁶X 20% 56
⁵⁷X 10% 57
Weighted Atomic Mass of Element X :
= (0.70)(55) + (0.20)(56) + (0.10)(57)
= 38.50 + 11.2 + 5.70
= 55.4
So, the Weighted Atomic Mass of Element X is 55.4
Answer:
THE MOLARITY IS 2.22 MOL/DM3
Explanation:
The solution formed was as a result of dissolving 37.5 g of Na2S in 217 g of water
Relative molecular mass of Na2S = ( 23* 2 + 32) = 78 g/mol
Molarity in g/dm3 is the amount of the substance dissolved in 1000 g or 1 L of the solvent. So we have;
37.5 g of Na2S = 217 g of water
( 37.5 * 1000 / 217 ) g = 1000 g of water
So, 172.81 g/dm3 of the solution
So therefore, molarity in mol/dm3 = mol in g/dm3 / molar mass
Molarity = 172.81 g/dm3 / 78 g/mol
Molarity = 2.22 mol/dm3
The molarity of the solution is 2.22 mol/dm3
Answer:
THE VOLUME OF THE NITROGEN GAS AT 2.5 MOLES , 1.75 ATM AND 475 K IS 55.64 L
Explanation:
Using the ideal gas equation
PV = nRT
P = 1.75 atm
n = 2.5 moles
T = 475 K
R = 0.082 L atm/mol K
V = unknown
Substituting the variables into the equation we have:
V = nRT / P
V = 2.5 * 0.082 * 475 / 1.75
V = 97.375 / 1.75
V = 55.64 L
The volume of the 2.5 moles of nitrogen gas exerted by 1.75 atm at 475 K is 55.64 L