Within the core of the Sun, temperatures and pressures are high enough to fuse hydrogen atoms into helium, which is the Sun's main form of energy production. Assuming there was a slight mistake in where you have copied the results here the correct answer is the third option.
Hope this helps!
Explanation:
As the total concentration is given as 1.2 mM. And, it is also given that salt present in the solution is NaCl.
As sodium chloride is an ionic compound so, when it is added to water then it will dissociate into sodium and chlorine ions as follows.

So, it means in total there will be formation of 2 ions when one molecules of NaCl dissociates.
Therefore, concentration of chlorine ions will be calculated as follows.
Concentration of
ions =
= 0.6 mM
Thus, we can conclude that the concentration of chloride ions is 0.6 mM.
Answer:

Explanation:
Step 1. Determine the cell potential
<u> E°/V </u>
2×[Cr ⟶ Cr³⁺ + 3e⁻] 0.744 V
<u>3×[Cu²⁺ + 2e⁻ ⟶ Cu] </u> <u>0.3419 V
</u>
2Cr + 3Cu²⁺ ⟶ 3Cu + 2Cr³⁺ 1.086 V
Step 2. Calculate ΔG°

<span>8.21 L of C3H8(g)
Lets take c as the molar volume at that temperature.
c L <><> 5c L
C3H8 (g) + 5O2 (g) --> 3CO2 + 4H2O + Q
8.21 L <><> x L
x = (8.21 * 5c)/c = 8.21 * 5 = 41.05 L O2 consumed for a 100% yield.</span>