T = 5, so after 5 years
p(t) = t^3 - 14t^2 + 20t + 120
Take derivative to find minimum:
p’(t) = 3t^2 - 28t + 10
Factor to solve for t:
p’(t) = (3t - 2)(t - 5)
0 = (3t - 2)(t - 5)
0 = 3t - 2
2 = 3t
2/3 = t
Plug 2/3 into original equation, this is a maximum. We want the minimum:
0 = t - 5
5 = t
Plug back into original:
5^3 - 14(5)^2 + 20(5) + 120
125 - 14(25) + 100 + 120
125 - 350 + 220
- 225 + 220
p(5) = -5
Answer:
91.8 ft
Step-by-step explanation:
So we can talk about the diagram, let's name a couple of points. The base of the tree is point T, and the top of the tree is point H. We want to find the length of TH given the length AB and the angles HAT and ABT.
The tangent function is useful here. By its definition, we know that ...
TA/BA = tan(∠ABT)
and
TH/TA = tan(∠HAT)
Then we can solve for TH by substituting for TA. From the first equation, ...
TA = BA·tan(∠ABT)
From the second equation, ...
TH = TA·tan(∠HAT) = (BA·tan(∠ABT))·tan(∠HAT)
Filling in the values, we get ...
TH = (24.8 ft)tan(87.3°)tan(9.9°) ≈ 91.8 ft
The height <em>h</em> of the tree is about 91.8 ft.
(I'm going to use brackets as my absolute value bars lol)
[5 x -3]
[-15]
=15
Answer:
the answer it $5.18
Step-by-step explanation:
$4.50 + ($4.50 x .15)
$4.50 + $0.68 = $5.18
Let the wire left be x yards.
Therefore, the answer of your question will be x yards.
Answer = x yards