Answer:
Restate the question
Step-by-step explanation:
Answer:
x = 4
Step-by-step explanation:
First you need to multiply both sides of the equation by -6/5
-6/5 × (-5/6x) = -6/5 × -10/3
Then you need to calculate and reduce. First, you'll reduce the numbers with the greatest common divisor, 6.
1/5 × 5x = -6/5 × (-10/3)
then reduce the greatest common divisor, 5
x = -6/5 × (-10/3)
Then multiply (multiplying two negatives equals a positive)
x = 6/5 × 10/3
reduce the greatest common divisor, 3
x = 2/5 × 10
reduce the greatest common divisor, 6
x = 2 × 2
x = 4
(i know this is confusing, sorry)
I’m not sure what happened while you were writing this, but if I’m reading it right, “My” has 18 books. If “My” has 3 times as many as 6, that also means 3 times 6, which is 18.
Given the equation:

We will use the following rule to find the solution to the equation:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
From the given equation: a = 6, b = 7, c = 2
So,
![\begin{gathered} x=\frac{-7\pm\sqrt[]{7^2-4\cdot6\cdot2}}{2\cdot6}=\frac{-7\pm\sqrt[]{1}}{12}=\frac{-7\pm1}{12} \\ x=\frac{-7-1}{12}=-\frac{8}{12}=-\frac{2}{3} \\ or,x=\frac{-7+1}{12}=-\frac{6}{12}=-\frac{1}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-7%5Cpm%5Csqrt%5B%5D%7B7%5E2-4%5Ccdot6%5Ccdot2%7D%7D%7B2%5Ccdot6%7D%3D%5Cfrac%7B-7%5Cpm%5Csqrt%5B%5D%7B1%7D%7D%7B12%7D%3D%5Cfrac%7B-7%5Cpm1%7D%7B12%7D%20%5C%5C%20x%3D%5Cfrac%7B-7-1%7D%7B12%7D%3D-%5Cfrac%7B8%7D%7B12%7D%3D-%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%20or%2Cx%3D%5Cfrac%7B-7%2B1%7D%7B12%7D%3D-%5Cfrac%7B6%7D%7B12%7D%3D-%5Cfrac%7B1%7D%7B2%7D%20%5Cend%7Bgathered%7D)
So, the answer will be option B) x = -1/2, -2/3
The given above is are triangles, as per the proof the line segments on top and bottom part are parallel. Also, it is given that two pairs of the angles of the triangles are congruent.
The triangles also share one common side, CA. Since, this side is between the angles the postulate that will prove the congruence of the triangles is ASA.
The answer to this item is the third choice.