let the other number be " n "
now, according to above condition :
therefore, the other number would be 23.
1/3 ln(<em>x</em>) + ln(2) - ln(3) = 3
Recall that
, so
ln(<em>x</em> ¹ʹ³) + ln(2) - ln(3) = 3
Condense the left side by using sum and difference properties of logarithms:


Then
ln(2/3 <em>x</em> ¹ʹ³) = 3
Take the exponential of both sides; that is, write both sides as powers of the constant <em>e</em>. (I'm using exp(<em>x</em>) = <em>e</em> ˣ so I can write it all in one line.)
exp(ln(2/3 <em>x</em> ¹ʹ³)) = exp(3)
Now exp(ln(<em>x</em>)) = <em>x </em>for all <em>x</em>, so this simplifies to
2/3 <em>x</em> ¹ʹ³ = exp(3)
Now solve for <em>x</em>. Multiply both sides by 3/2 :
3/2 × 2/3 <em>x</em> ¹ʹ³ = 3/2 exp(3)
<em>x</em> ¹ʹ³ = 3/2 exp(3)
Raise both sides to the power of 3:
(<em>x</em> ¹ʹ³)³ = (3/2 exp(3))³
<em>x</em> = 3³/2³ exp(3×3)
<em>x</em> = 27/8 exp(9)
which is the same as
<em>x</em> = 27/8 <em>e</em> ⁹
9514 1404 393
Answer:
- 0 ≤ m ≤ 7
- 0.4541 cm/month; average rate of growth over last 4 months of study
Step-by-step explanation:
<u>Part A</u>:
The study was concluded after 7 months. The fish cannot be expected to maintain exponential growth for any significant period beyond the observation period. A reasonable domain is ...
0 ≤ m ≤ 7
__
<u>Part B</u>:
The y-intercept is the value when m=0. It is the length of the fish at the start of the study.
__
<u>Part C</u>:
The average rate of change on the interval [3, 7] is given by ...
(f(7) -f(3))/(7 -3) = (4(1.08^7) -4(1.08^3))/4 = 1.08^3·(1.08^4 -1)
≈ 0.4541 cm/month
This is the average growth rate of the fish in cm per month over the period from 3 months to 7 months.
Answer:
You are missing some of the equation my dude
Step-by-step explanation:
The acronym for trigs is SOH CAH TOA
Sine means opposite divided by hypotenuse
So, let us find sine.
The opposie side is 16
The hypotenuse is 17.46

Use your calculator
The answer is ≈ 0.9164