Answer:

Step-by-step explanation:
step 1
Find the scale factor
we know that
If two figures are similar, then the ratio of its corresponding sides is equal to the scale factor
Let
z----> the scale factor
x----> corresponding side of the larger trapezoid
y----> corresponding side of the smaller trapezoid

we have


substitute

step 2
Find the area of the larger trapezoid
we know that
If two figures are similar, then the ratio of its areas is equal to the scale factor squared
Let
z----> the scale factor
x----> area of the larger trapezoid
y----> area of the smaller trapezoid

we have


substitute



Answer: x>1.2
Step-by-step explanation:
Let a number is x.
Hence,

Divide both parts of the equation by 5:

Answer:
6 root two
Step-by-step explanation:
geometric mean for leg t.
24*3=x2
x2=72
x=root(72)
6 root two
if my answer helps please mark as brainliest.
Answer:
Per ounce better buy is <em>Happy popcorn</em>.
Step-by-step explanation:
Given that:
Happy popcorn price for 16 ounces = $1.39
Popper popcorn price for 34 ounces = $2.79
Discount coupon present with Gabe = 40 ¢ = $0.40
To find:
Which brand is the better buy per ounce?
Solution:
First of all, let us calculate the price that Gabe has to pay after the discount coupon being applied.
Price for 16 ounces of Happy popcorn after discount = $1.29 - $0.40 = $0.99
Price for 1 ounce of Happy popcorn after discount =
= $0.062
Price for 34 ounces of Popper popcorn after discount = $2.79 - $0.40 = $2.39
Price for 1 ounce of Popper popcorn after discount =
= $0.070
Clearly, per ounce price of Happy popcorn is lesser than that of Popper popcorn.
Therefore per ounce better buy is <em>Happy popcorn</em>.