1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivan
3 years ago
5

A surveyor measured the angle of elevation of a flat spire as 15 degree from a point in horizontal group.He movrs 30m nearer to

the flat and measure the angle of elevation at 43 degrees.Calculate the height of the spire to the nearest hundredth.
Mathematics
1 answer:
frozen [14]3 years ago
8 0

Answer:

11.28m

Step-by-step explanation:

The computation of the height of the spire is shown below:

let us assume the height of the spire be x

Now

For triangle ABD

Tan 43 degrees = h ÷ x

x = h × cot 43 degrees

= 1.07236 h

For triangle ABC

tan 15 degrees = h ÷ (30 + x)

0.2679 = h ÷ 30 + 1.07236h

8.038 + 0.28728 h = h

h = 11.28m

You might be interested in
How do you solve this?
Pepsi [2]
From symmetry of sin(x) about pi/2, we know that sin(x)=sin(pi-x).
Therefore
sin(x)+sin(pi-x)=sin(x)+sin(x)=2sin(x).
3 0
3 years ago
Identify the values hat create ordered pairs that are solutions to the equation 3x-5y=20
djyliett [7]
X-intercept is 0
Y-intercept is —4
5 0
3 years ago
Can someone please help me with these 7 questions please?
yarga [219]

(1)\ (-xy)^3(xz)

Expand

(-xy)^3(xz) = (-x)^3* y^3*(xz)

(-xy)^3(xz) = -x^3* y^3*xz

Rewrite as:

(-xy)^3(xz) = -x^3*x* y^3*z

Apply law of indices

(-xy)^3(xz) = -x^4y^3z

(2)\ (\frac{1}{3}mn^{-4})^2

Expand

(\frac{1}{3}mn^{-4})^2 =(\frac{1}{3})^2m^2n^{-4*2}

(\frac{1}{3}mn^{-4})^2 =\frac{1}{9}m^2n^{-8

(3)\ (\frac{1}{5x^4})^{-2}

Apply negative power rule of indices

(\frac{1}{5x^4})^{-2}= (5x^4)^2

Expand

(\frac{1}{5x^4})^{-2}= 5^2x^{4*2}

(\frac{1}{5x^4})^{-2}= 25x^{8

(4)\ -x(2x^2 - 4x) - 6x^2

Expand

-x(2x^2 - 4x) - 6x^2 = -2x^3 + 4x^2 - 6x^2

Evaluate like terms

-x(2x^2 - 4x) - 6x^2 = -2x^3 -2x^2

Factor out x^2

-x(2x^2 - 4x) - 6x^2 = (-2x-2)x^2

Factor out -2

-x(2x^2 - 4x) - 6x^2 = -2(x+1)x^2

(5)\ \sqrt{\frac{4y}{3y^2}}

Divide by y

\sqrt{\frac{4y}{3y^2}} = \sqrt{\frac{4}{3y}}

Split

\sqrt{\frac{4y}{3y^2}} = \frac{\sqrt{4}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}}

Rationalize

\sqrt{\frac{4y}{3y^2}} = \frac{2}{\sqrt{3y}} * \frac{\sqrt{3y}}{\sqrt{3y}}

\sqrt{\frac{4y}{3y^2}} = \frac{2\sqrt{3y}}{3y}

(6)\ \frac{8}{3 + \sqrt 3}

Rationalize

\frac{8}{3 + \sqrt 3} = \frac{3 - \sqrt 3}{3 - \sqrt 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{(3 + \sqrt 3)(3 - \sqrt 3)}

Apply different of two squares to the denominator

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{3^2 - (\sqrt 3)^2}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{9 - 3}

\frac{8}{3 + \sqrt 3} = \frac{8(3 - \sqrt 3)}{6}

Simplify

\frac{8}{3 + \sqrt 3} = \frac{4(3 - \sqrt 3)}{3}

(7)\ \sqrt{40} - \sqrt{10} + \sqrt{90}

Expand

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4*10} - \sqrt{10} + \sqrt{9*10}

Split

\sqrt{40} - \sqrt{10} + \sqrt{90} =\sqrt{4}*\sqrt{10} - \sqrt{10} + \sqrt{9}*\sqrt{10}

Evaluate all roots

\sqrt{40} - \sqrt{10} + \sqrt{90} =2*\sqrt{10} - \sqrt{10} + 3*\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =2\sqrt{10} - \sqrt{10} + 3\sqrt{10}

\sqrt{40} - \sqrt{10} + \sqrt{90} =4\sqrt{10}

(8)\ \frac{r^2 + r - 6}{r^2 + 4r -12}

Expand

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r^2 + 3r-2r - 6}{r^2 + 6r-2r -12}

Factorize each

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r(r + 3)-2(r + 3)}{r(r + 6)-2(r +6)}

Factor out (r+3) in the numerator and (r + 6) in the denominator

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{(r -2)(r + 3)}{(r - 2)(r +6)}

Cancel out r - 2

\frac{r^2 + r - 6}{r^2 + 4r -12}=\frac{r + 3}{r +6}

(9)\ \frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14}

Cancel out x

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 5x - 14}

Expand the numerator of the 2nd fraction

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x^2 - 7x+2x - 14}

Factorize

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{x(x - 7)+2(x - 7)}

Factor out x - 7

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4x + 8}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Factor out 4 from 4x + 8

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4(x + 2)}{x} \cdot \frac{1}{(x + 2)(x - 7)}

Cancel out x + 2

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x} \cdot \frac{1}{(x - 7)}

\frac{4x + 8}{x^2} \cdot \frac{x}{x^2 - 5x - 14} = \frac{4}{x(x - 7)}

(10)\ (3x^3 + 15x^2 -21x) \div 3x

Factorize

(3x^3 + 15x^2 -21x) \div 3x = 3x(x^2 + 5x -7) \div 3x

Cancel out 3x

(3x^3 + 15x^2 -21x) \div 3x = x^2 + 5x -7

(11)\ \frac{m}{6m + 6} - \frac{1}{m+1}

Take LCM

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m(m + 1) - 1(6m + 6)}{(6m + 6)(m + 1)}

Expand

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 + m- 6m - 6}{(6m + 6)(m + 1)}

\frac{m}{6m + 6} - \frac{1}{m+1} = \frac{m^2 - 5m - 6}{(6m + 6)(m + 1)}

(12)\ \frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}}

Rewrite as:

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} \div \frac{2}{y^2 - 9}

Express as multiplication

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 9}{2}

Express y^2 - 9 as y^2 - 3^2

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{y^2 - 3^2}{2}

Express as difference of two squares

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{y - 3} * \frac{(y - 3)(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{1}{1} * \frac{(y+3)}{2}

\frac{\frac{1}{y - 3}}{\frac{2}{y^2 - 9}} = \frac{y+3}{2}

Read more at:

brainly.com/question/4372544

3 0
2 years ago
Steroids, which are dangerous, are sometimes used to improve athletic performance. A study by the National Athletic Trainers Ass
Yanka [14]

Answer:

At 95% confidence level, the difference between the proportion of freshmen using steroids in Illinois and the proportion of seniors using steroids in Illinois is -7.01135×10⁻³ < \hat{p}_1-\hat{p}_2 < 1.237

Step-by-step explanation:

Here we are required to construct the 95% confidence interval of the difference between two proportions

The formula for the confidence interval of the difference between two proportions is as follows;

\hat{p}_1-\hat{p}_2\pm z^{*}\sqrt{\frac{\hat{p}_1\left (1-\hat{p}_1  \right )}{n_{1}}+\frac{\hat{p}_2\left (1-\hat{p}_2  \right )}{n_{2}}}

Where:

\hat{p}_1  = \frac{34}{1679}

\hat{p}_2 = \frac{24}{1366}

n₁ = 1679

n₂ = 1366

z_{\alpha /2} at 95% confidence level = 1.96

Plugging in the values, we have;

\frac{34}{1679}- \frac{24}{1366} \pm 1.96 \times \sqrt{\frac{ \frac{34}{1679}\left (1- \frac{34}{1679}\right )}{1679}+\frac{\frac{24}{1366} \left (1-\frac{24}{1366}   \right )}{1366}}

Which gives;

-7.01135×10⁻³ < \hat{p}_1-\hat{p}_2 < 1.237.

At 95% confidence level, the difference between the proportion of freshmen using steroids in Illinois and the proportion of seniors using steroids in Illinois = -7.01135×10⁻³ < \hat{p}_1-\hat{p}_2 < 1.237.

7 0
3 years ago
Simplify the expression by combining like terms. Then,
Inessa [10]

Answer:

-14

Step-by-step explanation:

The like terms in this equation is y^2 and -7y^2 so combining the two the equation becomes:

xy-6y^2

Then we substitute the values in:

5×2-6×2^2 = -14

5 0
3 years ago
Other questions:
  • Refer to the graphic novel frame below. Write and solve an equation to find how many movies they have time to show.
    5·1 answer
  • Factor the quadratic expression in the equation y=2x^2+28x+96 and use the factors to find the zeros of the equation. Then, use t
    10·1 answer
  • ****BRAINLIEST GOES TO THE FIRST CORRECT ANSWER****
    7·1 answer
  • The equation d=m/v can be used to calculate the den
    6·1 answer
  • The Luz family budget is shown in the circle graph. The total budget is $3,000. How much does the Luz family spend on groceries?
    8·1 answer
  • Question 16 of 46
    12·1 answer
  • a leading coefficient of 1 has zeros of x = 3 and x = −2, what is the factored form of this function?
    5·1 answer
  • Which expressions are equivalent to
    9·1 answer
  • A mother invests $7000 in a bank account at the time of her daughter's birth. The interest is 18) compounded quarterly at a rate
    5·1 answer
  • What’s the unit rate for three dollars for 2 1/2 hours of work
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!