Answer:
Wat is the question?
Step-by-step explanation:
Answer:
i feel as if in the United States, both the metric system and the English system of measurement are used, although the English system predominates. This discussion question has three parts:
Look around you to find something in the U.S. that is measured in metrics. Describe it to the class.
Give an example of how you think the metric system will be used in your future career.
Do you think the U.S. should switch to metric system exclusively? Why or why not?
This week we learned about the metric and U.S. customary measurement systems. Please upload and submit your responses to the following questions in at least 150 words:
In reflecting on both measurement systems, what did you find most important?
Explain how both measurement systems could relate to your life, community, or current/future career.
Expert Answer
Step-by-step explanation:
Answer:
(2, 1)
Step-by-step explanation:
The best way to do this to avoid tedious fractions is to use the addition method (sometimes called the elimination method). We will work to eliminate one of the variables. Since the y values are smaller, let's work to get rid of those. That means we have to have a positive and a negative of the same number so they cancel each other out. We have a 2y and a 3y. The LCM of those numbers is 6, so we will multiply the first equation by a 3 and the second one by a 2. BUT they have to cancel out, so one of those multipliers will have to be negative. I made the 2 negative. Multiplying in the 3 and the -2:
3(-9x + 2y = -16)--> -27x + 6y = -48
-2(19x + 3y = 41)--> -38x - 6y = -82
Now you can see that the 6y and the -6y cancel each other out, leaving us to do the addition of what's left:
-65x = -130 so
x = 2
Now we will go back to either one of the original equations and sub in a 2 for x to solve for y:
19(2) + 3y = 41 so
38 + 3y = 41 and
3y = 3. Therefore,
y = 1
The solution set then is (2, 1)