Answer:
It won't let me type this for some reason but here it is.
Answer:
Likely
(indium.)
Explanation:
Number of atoms:
.
Dividing,
, the number of atoms by the Avogadro constant,
, would give the number of moles of atoms in this sample:
.
The mass of that many atom is
. Estimate the average mass of one mole of atoms in this sample:
.
The average mass of one mole of atoms of an element (
in this example) is numerically equal to the average atomic mass of that element. Refer to a modern periodic table and look for the element with average atomic mass
. Indium,
, is the closest match.
For this problem, the solution is exhibiting some colligative properties since the solute in the solution interferes with some of the properties of the solvent. We use equation for the boiling point elevation for this problem. We do as follows:
<span>
ΔT(boiling point) = (Kb)mi
</span>ΔT(boiling point) = (0.512)(1.3/2.0)(2)
ΔT(boiling point) = 0.67 degrees Celsius
<span>
T(boiling point) = 100 + 0.67 = 100.67 degrees Celsius</span>
Answer:
Doggy
Explanation: Its more exotic :)