Answer:
The geometric mean of the measures of the line segments AD and DC is 60/13
Step-by-step explanation:
Geometric mean: BD² = AD×DC
BD = √(AD×DC)
hypotenuse/leg = leg/part
ΔADB: AC/12 = 12/AD
AC×AD = 12×12 = 144
AD = 144/AC
ΔBDC: AC/5 = 5/DC
AC×DC = 5×5 = 25
DC = 25/AC
BD = √[(144/AC)(25/AC)]
BD = (12×5)/AC
BD= 60/AC
Apply Pythagoras theorem in ΔABC
AC² = 12² + 5²
AC² = 144+ 25 = 169
AC = √169 = 13
BD = 60/13
The geometric mean of the measures of the line segments AD and DC is BD = 60/13
<span>2x - 3(-4x + 2 )
2x+12x-6
14x-6
2(7x-3)</span>
She has $5.33 left
$9.00
-$3.67
————
$5.33
Answer:
8
Step-by-step explanation:
The radius is part of a 3-4-5 special right triangle.
The diameter is two times the radius, so 4*2=
<em>I hope this helps! :)</em>
Answer:
b
Step-by-step explanation: