1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
3 years ago
7

HELP ASAP!! I WILL GIVE BRAINEST

Mathematics
2 answers:
polet [3.4K]3 years ago
4 0

Answer:

x=11.8

Step-by-step explanation:

17.2/4.3=4

34.4/4=8.6

47.2/4=11.8

Alla [95]3 years ago
3 0

Answer:

11.8

Step-by-step explanation:

17.2/4.3 = 4

34.4/8.6 = 4

47.2/4=11.8

You might be interested in
-3-5-6--4 -3--1
scoray [572]

Answer:

-3, 6

Step-by-step explanation:

6 0
3 years ago
Let C be the boundary of the region in the first quadrant bounded by the x-axis, a quarter-circle with radius 9, and the y-axis,
rewona [7]

Solution :

Along the edge $C_1$

The parametric equation for $C_1$ is given :

$x_1(t) = 9t ,  y_2(t) = 0   \ \ for \ \ 0 \leq t \leq 1$

Along edge $C_2$

The curve here is a quarter circle with the radius 9. Therefore, the parametric equation with the domain $0 \leq t \leq 1 $ is then given by :

$x_2(t) = 9 \cos \left(\frac{\pi }{2}t\right)$

$y_2(t) = 9 \sin \left(\frac{\pi }{2}t\right)$

Along edge $C_3$

The parametric equation for $C_3$ is :

$x_1(t) = 0, \ \ \ y_2(t) = 9t  \ \ \ for \ 0 \leq t \leq 1$

Now,

x = 9t, ⇒ dx = 9 dt

y = 0, ⇒ dy = 0

$\int_{C_{1}}y^2 x dx + x^2 y dy = \int_0^1 (0)(0)+(0)(0) = 0$

And

$x(t) = 9 \cos \left(\frac{\pi}{2}t\right) \Rightarrow dx = -\frac{7 \pi}{2} \sin \left(\frac{\pi}{2}t\right)$

$y(t) = 9 \sin \left(\frac{\pi}{2}t\right) \Rightarrow dy = -\frac{7 \pi}{2} \cos \left(\frac{\pi}{2}t\right)$

Then :

$\int_{C_1} y^2 x dx + x^2 y dy$

$=\int_0^1 \left[\left( 9 \sin \frac{\pi}{2}t\right)^2\left(9 \cos \frac{\pi}{2}t\right)\left(-\frac{7 \pi}{2} \sin \frac{\pi}{2}t dt\right) + \left( 9 \cos \frac{\pi}{2}t\right)^2\left(9 \sin \frac{\pi}{2}t\right)\left(\frac{7 \pi}{2} \cos \frac{\pi}{2}t dt\right) \right]$

$=\left[-9^4\ \frac{\cos^4\left(\frac{\pi}{2}t\right)}{\frac{\pi}{2}} -9^4\ \frac{\sin^4\left(\frac{\pi}{2}t\right)}{\frac{\pi}{2}} \right]_0^1$

= 0

And

x = 0,  ⇒ dx = 0

y = 9 t,  ⇒ dy = 9 dt

$\int_{C_3} y^2 x dx + x^2 y dy = \int_0^1 (0)(0)+(0)(0) = 0$

Therefore,

$ \oint y^2xdx +x^2ydy = \int_{C_1} y^2 x dx + x^2 x dx+ \int_{C_2} y^2 x dx + x^2 x dx+ \int_{C_3} y^2 x dx + x^2 x dx  $

                        = 0 + 0 + 0

Applying the Green's theorem

$x^2 +y^2 = 81 \Rightarrow x \pm \sqrt{81-y^2}$

$\int_C P dx + Q dy = \int \int_R\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy $

Here,

$P(x,y) = y^2x \Rightarrow \frac{\partial P}{\partial y} = 2xy$

$Q(x,y) = x^2y \Rightarrow \frac{\partial Q}{\partial x} = 2xy$

$\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) = 2xy - 2xy = 0$

Therefore,

$\oint_Cy^2xdx+x^2ydy = \int_0^9 \int_0^{\sqrt{81-y^2}}0 \ dx dy$

                            $= \int_0^9 0\ dy = 0$

The vector field F is = $y^2 x \hat i+x^2 y \hat j$  is conservative.

5 0
3 years ago
(2x + 1) - 2 (2x² the expression is equivalent​
bekas [8.4K]

Answer:

=−4x^2+2x+1

Step-by-step explanation:

4 0
3 years ago
A ABC is isosceles. Find AC.<br> B<br> 3x + 3<br> 20 + 8<br> A<br> A<br> C
Sunny_sXe [5.5K]

Ansfdfgh gggghjtyuhjrswzargfyf

Step-by-step explanation:

4 0
3 years ago
What is happening to the graph when the x-values are between 4 and 8
VashaNatasha [74]
The numbers are going down
5 0
3 years ago
Read 2 more answers
Other questions:
  • After seeing countless commercials claiming one can get cheaper car insurance from an online company, a local insurance agent wa
    5·1 answer
  • Pls help me i have tried to answer this so many times and i’m never right
    12·2 answers
  • How many hours are 180 minutes
    8·2 answers
  • Order the following numbers from least to greatest 0.2, 0.7, 0.15, 0.39
    5·1 answer
  • Ramona is training to run her first marathon, 26.2 miles. One kilometer is equal to approximately 0.62 miles. About how many kil
    6·2 answers
  • Please help me guys im desprate at this point ​
    8·1 answer
  • Please answer all 4 questions, iĺl give brainliest
    8·2 answers
  • Does Anyone know slope? <br><br><br><br> NEED ASAP
    5·1 answer
  • Duda also hellpppppppppppp
    13·1 answer
  • Please help me with this homework
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!