Probably because people gave you the wrong answer. Not saying they did this intentionally....
Answer:
4 a+8 ab+8b
Step-by-step explanation:
8 a-4 a+6ab+2ab+5 b+3 b
4 a+8 ab+8b
There are many factors of 40, 24, and 16
All three numbers are divisible by 2, 4, and 8
Hope this helps
1) given function
y = - 2 ^ ( -x + 2) + 1
2) domain: domain is the set of the x-values for which the function is defined.
The exponential function is defined for all the real numbers, so the domain of the given function is all the real numbers.
3) x-intercept => y = 0
=> y = - 2 ^ ( -x + 2) + 1 = 0 => 2^ ( -x + 2) = 1
=> - x + 2 = 0 => x = 2
The x-intercept is x = 0
4) y-intercept => x = 0
=> y = - 2 ^ ( -x + 2) + 1= - 2 ^ ( 0 + 2) 1 = - (2)^(2) + 1 =- 4 + 1 = - 3
=> The y-intercept is - 3
5) limit when x -> negative infinite
Lim f(x) when x -> ∞ = - ∞
6) limit when x -> infinite
Lim f(x) when x - > infinite = 1
=> asymptote = y = 1
7) range is the set of values of the fucntion: y
Given that the function is strictly decreasing from -∞ to ∞, the range is from - ∞ to less than 1
Range (-∞,1)
Answer:
Weights of at least 340.1 are in the highest 20%.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
a. Highest 20 percent
At least X
100-20 = 80
So X is the 80th percentile, which is X when Z has a pvalue of 0.8. So X when Z = 0.842.
Weights of at least 340.1 are in the highest 20%.