it is either foreign commerce or outsourcing but i am leaning more towards foreign commerce
hope this helps
<span>Annual = Years = 6.64; Actually 7 years
Monthly = Years = 6.33; 6 Years, 4 months
Daily = Years = 6.30; 6 Years, 111 days
Continuously = 6.30; 6 Years, 110 days
The formula for compound interest is
FV = P*(1 + R/n)^(nt)
where
FV = Future Value
P = Principle
R = Annual interest rate
n = number of periods per year
t = number of years
For this problem, we can ignore p and concentrate on the (1+R/n)^(nt) term, looking for where it becomes 2. So let's use this simplified formula:
2 = (1 + R/n)^(nt)
With R, n, and t having the same meaning as in the original formula.
For for the case of compounding annually
2 = (1 + R/n)^(nt)
2 = (1 + 0.11/1)^(1t)
2 = (1.11)^t
The above equation is effectively asking for the logarithm of 2 using a base of 1.11. To do this take the log of 2 and divide by the log of 1.11. So
log(2) / log(1.11) = 0.301029996 / 0.045322979 = 6.641884618
This explanation of creating logarithms to arbitrary bases will not be repeated for the other problems.
The value of 6.641884618 indicates that many periods is needed. 6 is too low giving an increase of
1.11^6 =1.870414552
and 7 is too high, giving an increase of 1.11^7 = 2.076160153
But for the purpose of this problem, I'll say you double your money after 7 years.
For compounding monthly:
2 = (1 + R/n)^(nt)
2 = (1 + 0.11/12)^(12t)
2 = (1 + 0.009166667)^(12t)
2 = 1.009166667^(12t)
log(2)/log(1.009166667) = 0.301029996 / 0.003962897 = 75.96210258
And since the logarithm is actually 12*t, divide by 12
75.96210258 / 12 = 6.330175215
Which is 6 years and 4 months.
For compounding daily:
2 = (1 + 0.11/365)^(365t)
2 = (1 + 0.00030137)^(365t)
2 = 1.00030137^(365t)
log(2)/log(1.00030137) = 0.301029996 / 0.000130864 = 2300.334928
2300.334928 / 365 = 6.302287474
Continuously:
For continuous compounding, there's a bit of calculus required and the final formula is
FV = Pe^(rt)
where
FV = Future value
P = Principle
e = mathematical constant e. Approximately 2.718281828
r = Interest rate
t = time in years
Just as before, we'll simplify the formula and use
2 = e^(rt)
Since we have the function ln(x) which is the natural log of x, I won't bother doing log conversions.
rt = ln(2)
0.11 * t = 0.693147181
t = 0.693147181 / 0.11
t = 6.301338005</span>
what is your question ??
I think u have missed some parts here in the question ..
Answer: $187 ⇒ Amount should ABC report as a net pension liability (asset) at Dec 31, 2018
Explanation:
Given that,
Data for 2018 as of Dec 31, 2018 are as follows:
Projected benefit obligation = $634
Accumulated benefit obligation = $418.44
Plan assets at fair value = $821
Pension expense = $192.48
Employer's cash contribution (end of year) = $361
The amount should company report as a net pension liability at Dec 31, 2018 as follows:
Net Pension Liability = Projected benefit obligation - Plan assets at fair value
= $634 - $821
= $187 ⇒ Amount should ABC report as a net pension liability (asset) at Dec 31, 2018
Explanation:
Setting specific, measurable career development goals can help you get to the next level in your career. While developing a career plan can entail a significant amount of work, it will pay off in helping you to understand where you want to go with your career next and what you need to do to get there.
Creating and implementing an employee career development plan allows you to feel motivated at work, even if you haven’t found your dream job just yet, because it helps you to make concrete plans to get there.
Here, we define a career development plan template and outline five steps to easily and efficiently make an individual development plan for yourself.