Answer:
THE ANSWER IS THE PIC lolol
As the exterior angles always add up to 360, you can find the number of sides by dividing 360 by the measure of your exterior angle, 30. This gives you 360/30=12, meaning your polygon has 12 sides.
Let point (x, y) be any point on the graph, than the distance between (x, y) and the focus (3, 6) is sqrt((x - 3)^2 + (y - 6)^2) and the distance between (x, y) and the directrix, y = 4 is |y - 4|
Thus sqrt((x - 3)^2 + (y - 6)^2) = |y - 4|
(x - 3)^2 + (y - 6)^2 = (y - 4)^2
x^2 - 6x + 9 + y^2 - 12y + 36 = y^2 - 8y + 16
x^2 - 6x + 29 = -8y + 12y = 4y
(x - 3)^2 + 20 = 4y
y = 1/4(x - 3)^2 + 5
Required answer is f(x) = one fourth (x - 3)^2 + 5