Answer:
Explanation:
The oxidation number is an integer that represents the number of electrons that an atom receives or makes available to others when it forms a given compound.
The oxidation number is positive if the atom loses electrons, or shares them with an atom that has a tendency to accept them. And it will be negative when the atom gains electrons, or shares them with an atom that has a tendency to give them up.
Chemical compounds are electrically neutral. That is, the charge that all the atoms of a compound contribute must be globally null. That is, when having positive or negative charges in a compound, their sum must be zero.
There are some rules for determining oxidation numbers in compounds. Among them it is possible to mention:
- Hydrogen (H) has an oxidation number +1 with nonmetals and - 1 with metals.
- Oxygen (O) presents the oxidation number -2
- Fluorine F has a unique oxidation state -1
Then:
- NOF: N+(-2)+(-1)=0 → N=3 → oxidation number of nitrogen (N) is +3, oxidation number of oxygen (O) is -2 and oxidation number of fluorine (F) is -1.
- ClF₅: Cl + 5*(-1)=0 → Cl= 5 → oxidation number of chlorine (Cl) is +5 and oxidation number of fluorine (F) is -1.
- H₂SO₃: 2*(+1)+S+3*(-2)=0 → S=4 → oxidation number of hydrogen (H) is +1, oxidation number of oxygen (O) is -2 and oxidation number of sulfur (S) is +4.
Answer:
C
Explanation:
I'm assuming that you meant to type neutral charge.
Since electrons are negative and protons are positive, having a balanced number of both of these would cause an atom to have a neutral charge.
Answer:
pH = 12.22
Explanation:
<em>... To make up 170mL of solution... The temperature is 25°C...</em>
<em />
The dissolution of Barium Hydroxide, Ba(OH)₂ occurs as follows:
Ba(OH)₂ ⇄ Ba²⁺(aq) + 2OH⁻(aq)
<em>Where 1 mole of barium hydroxide produce 2 moles of hydroxide ion.</em>
<em />
To solve this question we need to convert mass of the hydroxide to moles with its molar mass. Twice these moles are moles of hydroxide ion (Based on the chemical equation). With moles of OH⁻ and the volume we can find [OH⁻] and [H⁺] using Kw. As pH = -log[H⁺], we can solve this problem:
<em>Moles Ba(OH)₂ molar mass: 171.34g/mol</em>
0.240g * (1mol / 171.34g) = 1.4x10⁻³ moles * 2 =
2.80x10⁻³ moles of OH⁻
<em>Molarity [OH⁻] and [H⁺]</em>
2.80x10⁻³ moles of OH⁻ / 0.170L = 0.01648M
As Kw at 25°C is 1x10⁻¹⁴:
Kw = 1x10⁻¹⁴ = [OH⁻] [H⁺]
[H⁺] = Kw / [OH⁻] = 1x10⁻¹⁴/0.01648M = 6.068x10⁻¹³M
<em>pH:</em>
pH = -log [H⁺]
pH = -log [6.068x10⁻¹³M]
<h3>pH = 12.22</h3>
250 --> 125 --> 62.5 --> 31.25
each arrow equals one half life, so 3 half lives
14 days/ 3 half lives =
4.67 days = half life
When you understand how neural pathways<span> are created in the brain, you ... But because I had the </span>will<span> to do it, I built a </span>new<span> pathway, and I rewired or reprogrammed my brain. ... can learn </span>new<span> behaviors and attitudes and can </span>transform<span> their </span>lives<span>. ... to the habit, and see what results you're </span>creating<span> in your </span><span>life</span>