<span>Perimeter =2w+2L= 520.
We can solve this by understanding that the area is maximized by a square
Therefore L=w.
p=2w+2w=520=4w
w=130
Area
A=wL=130(130)= 16900 square yards</span>
Answer: 76%
Step-by-step explanation:
each sq represents whole 5*5 = 25 for the second = 25 , but - the shaded area to find the unshaded are 25 - 13 = 12 unshaded square
50 = 100 , 50 - 12 = 38 shaded area in total
38*100/50 = ur answer
Procedure:
1) calculate the number of diferent teams of four members that can be formed (with the ten persons)
2) calculate the number of teams tha meet the specification (two girls and two boys)
3) Divide the positive events by the total number of events: this is the result of 2) by the result in 1)
Solution
1) the number of teams of four members that can be formed are:
10*9*8*7 / (4*3*2*1) = 210
2) Number of different teams with 2 boys and 2 girls = ways of chosing 2 boys * ways of chosing 2 girls
Ways of chosing 2 boys = 6*5/2 = 15
Ways of chosing 2 girls = 4*3/2 = 6
Number of different teams with 2 boys and 2 girls = 15 * 6 = 90
3) probability of choosing one of the 90 teams formed by 2 boys and 2 girls:
90/210 = 3/7
… z =w …angle v x w = angle z x y
It follows AAA SIMILARITY Relation
Answer:
y -6 = 1/3(x +3) or y = 1/3x +7
Step-by-step explanation:
The slope of the line describing the given path is the x-coefficient, -3. The slope of the perpendicular line will be the negative reciprocal of that:
m = -1/(-3) = 1/3
The point-slope form of the equation for a line can be used to write the equation for the new path:
y -k = m(x -h) . . . . . line with slope m through point (h, k)
For m=1/3 and (h, k) = (-3, 6), the new path can be represented by ...
y -6 = 1/3(x +3) . . . . point-slope form
y = (1/3)x +7 . . . . . . slope-intercept form