First you graph it using a graphing calculator, you look at the table of values to find out one point in which y= 0. The first one that comes up is when x=1.
If you don't have a graphing calculator you can use trial and error by inputing some numbers into x until you get y= 0.
Once you have an x value which makes y=0, you can start factorizing it.
you divide 6x3 +4x2 -6x - 4 into (x-1) which is when y =0
to get 6x2+10x+4
This can be used to write the polynomial as (x-1)(6x2 +10x+4)
you then factorize the second bracket, 6x2 +10x+4.
you can take the 2 outside to give you 2(3x2 +5x+2)
you can factorize this to become 2(3x+2)(x+1)
Now you just substitute your factorized second bracket into your unfactorized second bracket to give you 2(3x+2)(x+1)(x-1).
From this you can deduce that k= 1
Answer:
80,000
Step-by-step explanation:
$300÷3.75%=8,000×10=80,000
Answer:
B. 48
Step-by-step explanation:
just took the test <3
Answer:
The highest altitude that the object reaches is 576 feet.
Step-by-step explanation:
The maximum altitude reached by the object can be found by using the first and second derivatives of the given function. (First and Second Derivative Tests). Let be
, the first and second derivatives are, respectively:
First Derivative

Second Derivative

Then, the First and Second Derivative Test can be performed as follows. Let equalize the first derivative to zero and solve the resultant expression:


(Critical value)
The second derivative of the second-order polynomial presented above is a constant function and a negative number, which means that critical values leads to an absolute maximum, that is, the highest altitude reached by the object. Then, let is evaluate the function at the critical value:


The highest altitude that the object reaches is 576 feet.