Answer:
The length of each side is 26.3 cm
Step-by-step explanation:
Opposite sides of an isoceles triangle are equal
The isoceles triangle is divided into 2 right-angled triangles so the length of one side can be calculated using trigonometric ratio
When the isoceles triangle is divided, the angle in the right-angled triangle is 20° (1/2 of 40°) and the base is 9cm (1/2 of 18 cm), the hypotenuse side is calculated using trigonometric ratio
Let the length of the hypotenuse side be y
9/y = sin 20°
y = 9/0.3420 = 26.3
Length of each side is 26.3 cm
Answer:

Step-by-step explanation:
<em>See attachment for complete question</em>
Given



Required
Determine the length of VW
Perimeter is calculated as:

This gives:

Substitute values for VW, VY and Perimeter

Collect Like Terms


Divide through by 2

Collect Like Terms




Substitute 6 for x in 



$1,041,666.70 I'm not sure but that what I think the answer is
Answer:
Tn = 2Tn-1 - Tn-2
Step-by-step explanation:
Before we can generate the recursive sequence, we need to find the nth term of the given sequence.
nth term of an AP is given as:
Tn = a+(n-1)d
If a17 = -40
T17 = a+(17-1)d = -40
a+16d = -40 ...(1)
If a28 = -73
T28 = a+(28-1)d = -73
a+27d = -73 ...(2)
Solving both equations simultaneously using elimination method.
Subtracting 1 from 2 we have:
27d - 16d = -73-(-40)
11d = -73+40
11d = -33
d = -3
Substituting d = -3 into 1
a+16(-3) = -40
a - 48 = -40
a = -40+48
a = 8
Given a = 8, d = -3, the nth term of the sequence will be
Tn = 8+(n-1) (-3)
Tn = 8+(-3n+3)
Tn = 8-3n+3
Tn = 11-3n
Given Tn = 11-3n and d = -3
Tn-1 = Tn - d... (3)
Tn-1 = 11-3n +3
Tn-1 = 14-3n
Tn-2 = Tn-2d...(4)
Tn-2 = 11-3n-2(-3)
Tn-2 = 11-3n+6
Tn-2 = 17-3n
From 3, d = Tn - Tn-1
From 4, d = (Tn - Tn-2)/2
Equating both common difference
(Tn - Tn-2)/2 = Tn - Tn-1
Tn - Tn-2 = 2(Tn - Tn-1)
Tn - Tn-2 = 2Tn-2Tn-1
2Tn-Tn = 2Tn-1 - Tn-2
Tn = 2Tn-1 - Tn-2
The recursive formula will be
Tn = 2Tn-1 - Tn-2
Answer:

or

Step-by-step explanation:
-7,-3,1,5,... is a arithmetic sequence.
Arithmetic sequences have a common difference. That is, it is going up by 4 each time.
When you see arithmetic sequence, you should think linear equation.
The point-slope form of a line is
.
m is the common difference, the slope.
Any they are using the point at x=1 in the point slope form. So they are using (1,-7).
So let's put this into our point-slope form:


Subtract 7 on both sides:

So your answer is
