Answer:
A
Step-by-step explanation:
given 2 secants drawn from an external point to the circle , then
the product of the measures of one secant's external part and that entire secant is equal to the product of the other secant's external part and that entire secant, that is
9(9 + 2 + 3x) = 10(10 + 2x + 2)
9(11 + 3x) = 10(12 + 2x) ← distribute parenthesis on both sides
99 + 27x = 120 + 20x ( subtract 20x from both sides )
99 + 7x = 120 ( subtract 99 from both sides )
7x = 21 ( divide both sides by 7 )
x = 3
Answer:
Step-by-step explanation:
Given function is
(a)F(x)=
=

(b)F(x)=
=![\frac{\left [ 2\left ( x-3\right )\right \left ( x-5\right )+\left ( x-3\right )^2]\left [ \left ( x-4\right )^2\left ( x^2+3\right )^5\right ]-\left [ 2\left ( x-4\right )^{3}\left ( x^2+3\right )^5+5\left ( x^2+3\right )^4\left ( 2x\right )\left ( x-4\right )^2\right ]\left [ \left ( x-3\right )^2\left ( x-5\right )\right ]}{\left [\left ( x-4\right )^2\left ( x^2+3\right )^5\right ]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%20%5B%202%5Cleft%20%28%20x-3%5Cright%20%29%5Cright%20%5Cleft%20%28%20x-5%5Cright%20%29%2B%5Cleft%20%28%20x-3%5Cright%20%29%5E2%5D%5Cleft%20%5B%20%5Cleft%20%28%20x-4%5Cright%20%29%5E2%5Cleft%20%28%20x%5E2%2B3%5Cright%20%29%5E5%5Cright%20%5D-%5Cleft%20%5B%202%5Cleft%20%28%20x-4%5Cright%20%29%5E%7B3%7D%5Cleft%20%28%20x%5E2%2B3%5Cright%20%29%5E5%2B5%5Cleft%20%28%20x%5E2%2B3%5Cright%20%29%5E4%5Cleft%20%28%202x%5Cright%20%29%5Cleft%20%28%20x-4%5Cright%20%29%5E2%5Cright%20%5D%5Cleft%20%5B%20%5Cleft%20%28%20x-3%5Cright%20%29%5E2%5Cleft%20%28%20x-5%5Cright%20%29%5Cright%20%5D%7D%7B%5Cleft%20%5B%5Cleft%20%28%20x-4%5Cright%20%29%5E2%5Cleft%20%28%20x%5E2%2B3%5Cright%20%29%5E5%5Cright%20%5D%5E2%7D)
the answer is 160 because 8 times 5 equals 40 times it by 4 equals 160

<u>Given expression is </u>

can be rewritten as

We know,

And

So, using this identity, we


can be further rewritten as





<u>Hence, </u>

If they have opposite signs the point can be in either the second or fourth quadrants.
-x and +y is in the second quadrant
+x and -y is in the fourth quadrant.