We have to know which of the given statement is not true of carbon.
Not true statement of carbon is - it forms strong ionic bonds.
It can not form ionic bond. to produce ionic bond, carbon has to be converted into either C⁴⁺ or C⁴⁻.
The electronic configuration of C-atom is 1s²2s²2p⁴.
To form C⁴⁺ cation, four electrons must be removed from outermost shell of carbon atom which requires huge energy to supply.
To form C⁴⁻ anion, four electrons must be added to outermost shell of carbon atom which is not possible as outermost shell of C-atom does not have 2d orbital to accommodate extra electrons.
Answer:
Option A, The Rutherford experiment proved the Thomson "plum-pudding" model of the atom to be essentially correct.
Explanation:
Thomson's plum pudding model:
Plum pudding model was proposed by J.J Thomson. In Thomson's model, atoms are proposed as sea of positively charge in which electrons are distributed through out.
Result of Rutherford experiment:
As per Rutherford's experiment:
Most of the space inside the atom is empty.
Positively charge of the atom are concentrated in the centre of the atom known as nucleus.
Electrons are present outside the nucleus and revolve around it.
As it is clear that, result of Rutherford experiment did not supported the Thomson model.
Answer:

Explanation:
<h2><u>Displacement reaction:</u></h2>
- A reaction in which an element displaces or replaces another element of a compound is called a displacement reaction.
<h3><u>Types:</u></h3>
There are 2 types:
<h3><u>1. Single displacement reaction:</u></h3>
- If one element displaces 1 other element of a compound, it is called single displacement reaction.
- <u>Example</u>:

- Here, 1 element (Fe) displaces 1 other element (Cu) of a compound.
<h3><u>2. Double displacement reaction:</u></h3>
- If two elements in two compounds displace one another, it is called double displacement reaction.
- <u>Example:</u>

- Here, Copper and sodium both displace each other.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
2.89 g/cm^3
Explanation:
Since density equals mass over volume (or also seen as
), simply divide 66.5 grams by 23.0 cm. This will output an answer of 2.89 g/cm^3.