Answer:
<u>150</u>
Step-by-step explanation:
So I will shorten Eric, and Bob's names as E, and B.
So the equations are this
B-E = B+E - 240, E as Eric, and B as Bob, and this E+B=9(E-B)
Move the variables and you get
-2E =- 240
Just divide them both by -2
and E=120
So when we know the value of E we can just plug it into the 1st question
120+B=9B+1080
Moves the Variables and numbers to the other side
8B=1200
1200/8= 150
B=150
There is Bob's weight
Answer:
35/100
Step-by-step explanation:
You have 12% of horses (10÷84=0.1190 and 0.1190 = 12%)
You have 54% of sheep (54÷84=0.535 and 0.535=54%)
Subtract the amount of Sheep and Horses for the total amount of animals
84-(10+54)
You have 35% of cows (29÷84=0.345 and 0.345=35%)
35% to a fraction is 35/100 (simplified version 7/20)
I hope this helps (:
well, keeping in mind that a year has 12 months, that means that 8 months is 8/12 of a year, when Mrs Rojas pull her money out.
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$6000\\ r=rate\to 4\%\to \frac{4}{100}\dotfill &0.04\\ t=years\to \frac{8}{12}\dotfill &\frac{2}{3} \end{cases} \\\\\\ A=6000[1+(0.04)(\frac{2}{3})]\implies A=6000\left( \frac{77}{75} \right)\implies A=6160](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%20%5C%246000%5C%5C%20r%3Drate%5Cto%204%5C%25%5Cto%20%5Cfrac%7B4%7D%7B100%7D%5Cdotfill%20%260.04%5C%5C%20t%3Dyears%5Cto%20%5Cfrac%7B8%7D%7B12%7D%5Cdotfill%20%26%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D6000%5B1%2B%280.04%29%28%5Cfrac%7B2%7D%7B3%7D%29%5D%5Cimplies%20A%3D6000%5Cleft%28%20%5Cfrac%7B77%7D%7B75%7D%20%5Cright%29%5Cimplies%20A%3D6160)
well, she put in 6000 bucks, got back 160 extra, that's the interest earned in the 8 months.
what if she had left her money for 1 whole year, then
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$6000\\ r=rate\to 4\%\to \frac{4}{100}\dotfill &0.04\\ t=years\dotfill &1 \end{cases} \\\\\\ A=6000[1+(0.04)(1)]\implies A=6240](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%20%5C%246000%5C%5C%20r%3Drate%5Cto%204%5C%25%5Cto%20%5Cfrac%7B4%7D%7B100%7D%5Cdotfill%20%260.04%5C%5C%20t%3Dyears%5Cdotfill%20%261%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D6000%5B1%2B%280.04%29%281%29%5D%5Cimplies%20A%3D6240)
so had she left it in for a year, she'd have gotten 6240, namely 240 in interest, well, what fraction of a year's interest was earned? or worded differently, what fraction is 160(8 months) of 240(1 year)?

Yes because if you take 4:3 it equals out to be 2:1.5