Answer:
Points Q, J and M are not collinear
Step-by-step explanation:
Three points cannot be collinear if they are not coplanar (on the same plane), and M is on a different plane than Q. J is located on both planes.
A geometric sequence is a sequence in which there is a common ratio between any two consecutive terms. In this case if X:Y:Z are in the ratio of 2:7:8 the multiplying by a constant k, we have X=2k, Y= 7k and Z=8k.
Then if X, Y-12, Z form a Geometric sequence, it means X/Y-12=Y-12/Z which is the same as 2k/7k-12=7k-12/8k if we cross multply, we get
16k²= 49k²-168k +144
33k²-168k+144 =0 solving for k
k = 4 or 1.091 if we take the whole number to find the values of X,Y and z,
X= 8, Y= 28 and Z=32
<span>f(x) = x</span>² <span>+ 12x + 6 </span>→ y = x² + 12x + 6<span>
Let us convert the standard form into vertex form.
1) Complete the squares. Isolate x</span>² and x terms.
<span>y - 6 = x</span>² + 12x
<span>
2) Create the perfect square trinomial. Whatever number is added on one side must also be added on the other side.
y - 6 + 36 = x</span>² + 12x + 36<span>
y + 30 = (x + 6)</span>²
<span>y = (x + 6)</span>² - 30 ← Vertex form
<span>
To check:
y = (x + 6) (x + 6) - 30
y = x</span>² + 6x + 6x + 36 - 30
<span>y = x</span>² + 12x + 6<span>
The zero that could be added to the given function is 36, -36</span>
X + 3 (3) will be the answer