Answer:
x1, x2 = 4.74 , -2.74
Step-by-step explanation:
To find the roots of a quadratic function we have to use the bhaskara formula
ax^2 + bx + c
x^2 - 2x - 13
a = 1 b = -2 c = -13
x1 = (-b + √ b^2 - 4ac)/2a
x2 =(-b - √ b^2 - 4ac)/2a
x1 = (2 + √ (2^2 - 4 * 1 * (-13)))/2 * 1
x1 = (2 + √ (4 + 52)) / 2
x1 = (2 + √ 56 ) / 2
x1 = (2 + 7.48) / 2
x1 = 9.48 / 2
x1 = 4.74
x2 = (2 - √ (2^2 - 4 * 1 * (-13)))/2 * 1
x2 = (2 - √ (4 + 52)) / 2
x2 = (2 - √ 56 ) / 2
x2 = (2 - 7.48) / 2
x2 = -5.48 / 2
x2 = -2.74
Answer: A. 4.
Explanation: solving graphically
You would move your point 24 up from the starting point then move it three down from the 24 so if you start at zero go to 24 then move it down to 21.
The domain and range is the foreman range 60