A neutral atom in its ground state contains 28 electrons. this element is considered a <span>transition </span>element, and has 8 electrons in orbitals with l = 2.
Electron configuration: ₂₈X 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ 4s².
l is azimuthal quantum number, l = 2 describes d orbital. There is eight electrons in 3d orbital.
We'll look at what happens<span> when you </span>dissolve ionic<span> and covalent </span>compounds<span> in </span>water<span>. </span>Ionic compounds<span> break apart into the </span>ions<span> that make them up, a process called dissociation, while covalent </span>compounds only break into the molecules, not the individual atoms.<span>When you immerse an </span>ionic compound<span> in </span>water<span>, the ions are attracted to the </span>water <span>molecules, each of which carries a polar charge. If the attraction between the ions and the </span>water <span>molecules </span>is<span> great enough to break the bonds holding the ions together, the compound </span><span>dissolves</span>
Plants can adapt to their environment for example algae is soft and can survive being moved or broken this is perfect for living on top of water were animals often swim and shake the surface.
Answer:
0.03697 mol Al₂(SO₄)₃
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
12.65 g Al₂(SO₄)₃
<u>Step 2: Identify Conversions</u>
Molar Mass of Al - 26.98 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Al₂(SO₄)₃ - 2(26.98) + 3(32.07) + 12(16.00) = 342.17 g/mol
<u>Step 3: Convert</u>
<u />
= 0.03697 mol Al₂(SO₄)₃
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig fig rules and round.</em>
We already have 4 sig figs in the final answer, so no need to round.
1. Cylinder
2. Sphere
3. Rectangular prism
4. Cone
Hope this can help.