The graph of equation is a line
Yes, they are. Treat ratios like fractions, simplify them the same way. In 6/36, the GCF (Greatest Common Factor) of the numerator and the denominator is six. So, we divide both sides by six. This gives us 1/6, which is still the same fraction. (Making it proportional)
Similarity ratio is a ratio of two figures having the same side.
Ratio can be rate but rate can never be ratio. In essence, rate is comparison between ratios. While ratio is comparison between two or more numbers. Further, ratio on one hand, involves numbers either in amount, size, measurement, degrees, percentages or fractions with the absence of specific unit of measurement. On the contrary, rate is comparing quantities, amounts or unit of events happened expressed in a specific measurement or expressed under time. Take for instance, an example, Joe eats 2 while John eats 4 meals in a day. The ratio can be Joe: John, 2:4 meals. While the rate, is Joe eats 2 meals/day and John 4 meals/day.<span>
</span>
<u>Answer:</u>
a) 3.675 m
b) 3.67m
<u>Explanation:</u>
We are given acceleration due to gravity on earth =
And on planet given =
A) <u>Since the maximum</u><u> jump height</u><u> is given by the formula </u>

Where H = max jump height,
v0 = velocity of jump,
Ø = angle of jump and
g = acceleration due to gravity
Considering velocity and angle in both cases

Where H1 = jump height on given planet,
H2 = jump height on earth = 0.75m (given)
g1 = 2.0
and
g2 = 9.8
Substituting these values we get H1 = 3.675m which is the required answer
B)<u> Formula to </u><u>find height</u><u> of ball thrown is given by </u>

which is due to projectile motion of ball
Now h = max height,
v0 = initial velocity = 0,
t = time of motion,
a = acceleration = g = acceleration due to gravity
Considering t = same on both places we can write

where h1 and h2 are max heights ball reaches on planet and earth respectively and g1 and g2 are respective accelerations
substituting h2 = 18m, g1 = 2.0
and g2 = 9.8
We get h1 = 3.67m which is the required height