The perimeter of the first figure is 34 cm and the area is 64 cm².
The perimeter of the second figure is 38 cm and the area is 60 cm².
The perimeter of the third figure is 30 cm and the area is 36 cm².
The perimeter of the fourth figure is 72 cm and the area is 200 cm².
The perimeter of the fifth figure is 30 cm and the area is 36 cm².
To find the perimeter of each, we add the area of all sides. For the first figure, the missing sides are 1 cm and 6 cm. To find the area, we have two rectangles whose dimensions are 6x10 and 1x4.
For the second figure, the missing sides are 4 cm and 3 cm. To find the area, we have two rectangles whose dimensions are 4x12 and 3x4.
For the third figure, the missing sides are 3 cm, 3 cm and 8 cm. To find the area, we have two rectangles whose dimensions are 4x3 and 3x8.
For the fourth figure, the missing sides are 10 cm, 10 cm, 6 cm and 6 cm. To find the area, we have two squares whose dimensions are 10x10.
For the fifth figure, the missing sides are 3 cm and 9 cm. To find the area, we have two rectangles whose dimensions are 3x6 and 6x3.
Could it be like 1/8 of 100?
In a direct proportion, the equation can be set up as
y = kx
k = y/x
k = 6/20
k = 0.3
Answer:
P = 0.4812
Step-by-step explanation:
First, we need to use here two expressions and then do the calculations.
The first one is the conditional probability which is:
P(B|A) = P(A∩B)/P(A) (1)
The second expression to use has relation with the Bayes's theorem which is the following:
P(D|C) = P(C|D)*P(D) / P(C|D)*P(D) + P(C|d)*P(d) (2)
Now, the expression (2) is the one that we will use to calculate the probability of a selected random bicyclist who tests positive for steroids.
So, in this case, we will call C for positive and D that is using steroids and d is the opposite of d, which means do not use steroids.
Then, the probabilities are the following:
P(D) = 8% or 0.08
P(C|D) = 96% or 0.96
P(C|d) = 9% or 0.09
P(d) = 1 - 0.08 = 0.92
With these data, let's replace in expression 2
P(D|C) = 0.96 * 0.08 /0.96 * 0.08 + 0.09*0.92
P(D|C) = 0.0768 / 0.1596
P(D|C) = 0.4812 or 48.12%
If the number of cheeseburgers sold was two times the number of hamburgers sold we know 1/3 of the burgers sold were hamburgers. So 240/3=80. This means 80 hamburgers were sold and 160 cheeseburgers were sold