Answer:
2 1/4
Step-by-step explanation:
Check the picture below. So the parabola looks more or less like so.
![\bf \textit{horizontal parabola vertex form with focus point distance} \\\\ 4p(x- h)=(y- k)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h+p,k)}\qquad \stackrel{directrix}{x=h-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\supset}\qquad \stackrel{"p"~is~positive}{op ens~\subset} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bhorizontal%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Bp%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7Bx%3Dh-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Csupset%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Csubset%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \begin{cases} h=-5\\ k=2\\ p=4 \end{cases}\implies 4(4)[x-(-5)]=[y-2]^2\implies 16(x+5)=(y-2)^2 \\\\\\ x+5=\cfrac{1}{16}(y-2)^2\implies x = \cfrac{1}{16}(y-2)^2-5](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20h%3D-5%5C%5C%20k%3D2%5C%5C%20p%3D4%20%5Cend%7Bcases%7D%5Cimplies%204%284%29%5Bx-%28-5%29%5D%3D%5By-2%5D%5E2%5Cimplies%2016%28x%2B5%29%3D%28y-2%29%5E2%20%5C%5C%5C%5C%5C%5C%20x%2B5%3D%5Ccfrac%7B1%7D%7B16%7D%28y-2%29%5E2%5Cimplies%20x%20%3D%20%5Ccfrac%7B1%7D%7B16%7D%28y-2%29%5E2-5)
Subtract 2c from both sides
5c-25-2c=2c+6-2c
3c-25=6
add 25 to both sides
3c-25+25=6+25
3c=31
Divide both sides by 3
3c/3=31/3
c=31/3
hope this helps!
Answer:
Step-by-step explanation:
We use these three methods
1. Generalized cylinder method
2. Surface of revolution method
3. Method of slices general quadratic
1. For A = x² = 4z + 8
We use the method of slices for general quadratic
2. X²-4y²-4z² = 16
We use the generalized cylinder method
3. Y² = z² + 2z²
We use surface of revolution
Please check attachment for answers
Answer:
x = 4
Step-by-step explanation:
Solve for x:
x - 12 + 18 = 10
Hint: | Group like terms in x - 12 + 18.
Grouping like terms, x - 12 + 18 = x + (18 - 12):
x + (18 - 12) = 10
Hint: | Evaluate 18 - 12.
18 - 12 = 6:
x + 6 = 10
Hint: | Isolate terms with x to the left hand side.
Subtract 6 from both sides:
x + (6 - 6) = 10 - 6
Hint: | Look for the difference of two identical terms.
6 - 6 = 0:
x = 10 - 6
Hint: | Evaluate 10 - 6.
10 - 6 = 4:
Answer: x = 4