Answer:
A=ε*l*c
A= 2- log₁₀ % T
Step-by-step explanation:
There is a linear relationship between the concentration of a sample and absorbance according to Beer-Lambert Law.
A=ε*l*c
where;
A=absorbance
ε=absorption coefficient
l=path length
c=concentration
Because % transmittance is transmittance value multiplied by 100 then, the equation that will allow us calculate absorbance from % transmittance value will be;
A= 2- log₁₀ % T where T is transmittance.
The domain { x | x = -5 , -3 , 1 , 2 , 6}
Answer:
The answer to the problem is C I think hopefully I’m right I did the problem twice to make sure
The answer for t is 4 and the proportional relationship is 9
Answer:
Step-by-step explanation:
A suitable table or calculator is needed.
One standard deviation from the mean includes 68.27% of the total, so the number of bottles in the range 20 ± 0.16 ounces will be ...
0.6827·26,000 = 17,750 . . . . . within 20 ± 0.16
__
The number below 1.5 standard deviations below the mean is about 6.68%, so for the given sample size is expected to be ...
0.66799·26,000 = 1737 . . . . . below 19.76
_____
<em>Comment on the first number</em>
The "empirical rule" tells you that 68% of the population is within 1 standard deviation (0.16 ounces) of the mean. When the number involved is expected to be expressed to 5 significant digits, your probability value needs better accuracy than that. To 6 digits, the value is 0.682689, which gives the same "rounded to the nearest integer" value as the one shown above.