The answer to this is that t<span>here is a negative correlation and a causal correlation. The higher the average daily winter temperature the lower your heating bill.</span>
The electric field strength at any point from a charged particle is given by E = kq/r^2 and we can use this to calculate the field strength of the two fields individually at the midpoint.
The field strength at midway (r = 0.171/2 = 0.0885 m) for particle 1 is E = (8.99x10^9)(-1* 10^-7)/(0.0885)^2 = -7.041 N/C and the field strength at midway for particle 2 is E = (8.99x10^9)(5.98* 10^-7)/(0.0935)^2 = <span>-7.041 N/C
</span>
Note the sign of the field for particle 1 is negative so this is attractive for a test charge whereas for particle 2 it is positive therefore their equal magnitudes will add to give the magnitude of the net field, 2*<span>7.041 N/C </span>= 14.082 N/C
<h3>
Answer: False</h3>
==============================================
Explanation:
I'm assuming you meant to type out
(y-2)^2 = y^2-6y+4
This equation is not true for all real numbers because the left hand side expands out like so
(y-2)^2
(y-2)(y-2)
x(y-2) .... let x = y-2
xy-2x
y(x)-2(x)
y(y-2)-2(y-2) ... replace x with y-2
y^2-2y-2y+4
y^2-4y+4
So if the claim was (y-2)^2 = y^2-4y+4, then the claim would be true. However, the right hand side we're given doesn't match up with y^2-4y+4
--------------------------
Another approach is to pick some y value such as y = 2 to find that
(y-2)^2 = y^2-6y+4
(2-2)^2 = 2^2 - 6(2) + 4 .... plug in y = 2
0^2 = 2^2 - 6(2) + 4
0 = 4 - 6(2) + 4
0 = 4 - 12 + 4
0 = -4
We get a false statement. This is one counterexample showing the given equation is not true for all values of y.
40 is considered an outlier since it it much further out on the data scale
Hope this helps!