Explanation:
Unclear question. But I inferred this to be clear rendering of your question;
1) It is considered a circle and a certain point. The expressions dot inside the circle, dot on circle, or dot outside the text describe the position of a dot relative to a circle. In figure 2 are drawn: a circle C of center O, points on the circle, points outside the circle and points inside the circle. a) Name the points inside the circle; b) Name the points that belong to the circle; c) Name the points outside the circle.
2) Consider any point P and a circle C of center O and radius r. Compare the distance OP with the radius of the circle if: a) The point is inside the circle; b) The point is on the circle; c) The point is outside the circle.
Any polynomial's graph cannot have two simultaneous maxima, so they must contain a minima between them. Thus, the total number of turning points of the graph is 3. Generally, when plotting a polynomial, the number of turning points is:
n = d -1; where d is the degree of the polynomial and n is the number of turning points. Thus, this function's degree must be at least 4. The answer is b.
The slope of a line is given by the change in y coordinates over the change in x coordinate.
The slope of line DE will be (4 - -3)/ (7-1) = 7/6
If M1 and M2 are slopes of two perpendicular lines at a point then
M1× M2 = -1
Thus, the slope of a perpendicular to line DE will be -6/7.
Answer:
Step-by-step explanation:
48.75
Since we’re trying to find minutes, concert all known information to minutes
1 hr 15 mins = 75 mins
1 hr 30 mins = 90 mins
Next, calculate how many total minutes Gage has skated in the first 8 days
75(5) + 90(3) = 645 mins
Create an equation to find the average of Gage’s minutes of skating. Add up all the minutes and divide by the total amount of days and set equal to 85, the average we are trying to get.
(645 mins + x mins)/9 days = 85
Solve for x
645 + x = 765
x = 120
So, in order to have an average of an 85 minute skate time, Gage would need to skate 120 minutes on the ninth day.