Answer:
The speed of a wave depends on the characteristics of the medium. For example, in the case of a guitar, the strings vibrate to produce the sound. The speed of the waves on the strings, and the wavelength, determine the frequency of the sound produced. The strings on a guitar have different thickness but may be made of similar material. They have different linear densities, where the linear density is defined as the mass per length,
μ
=
mass of string
length of string
=
m
l
.
In this chapter, we consider only string with a constant linear density. If the linear density is constant, then the mass
(
Δ
m
)
of a small length of string
(
Δ
x
)
is
Δ
m
=
μ
Δ
x
.
For example, if the string has a length of 2.00 m and a mass of 0.06 kg, then the linear density is
μ
=
0.06
kg
2.00
m
=
0.03
kg
m
.
If a 1.00-mm section is cut from the string, the mass of the 1.00-mm length is
Δ
m
=
μ
Δ
x
=
(
0.03
kg
m
)
0.001
m
=
3.00
×
10
−
5
kg
.
The guitar also has a method to change the tension of the strings. The tension of the strings is adjusted by turning spindles, called the tuning pegs, around which the strings are wrapped. For the guitar, the linear density of the string and the tension in the string determine the speed of the waves in the string and the frequency of the sound produced is proportional to the wave speed.
The answer to this question is that I wanna is this one is a good day to be your favorite person to be it’s 3
<span>Based on the attached image, the interior angle A of the polygon in the figure equal 110 degrees. If you can see the image the angle A is equal to the angle on the other side. The angle A is an example of obtuse angle because has the size of more 90 degrees and less than 180 degrees. All the angles in the image are obtuse except the one angle in the top that measures 50 degrees.</span>
0.035 x 1.02 is equal to 0.0357. 0.0357 divided by 0.00015 is equal to 238.