Answer:
electron-electron repulsion
Explanation:
When electrons add into valence shell of neutral elements, the element assumes a negative oxidation state. With this, the number of electrons having (-) charges will be larger than the number of protons having positive (+) charges. As a result, the extra electrons repel one another (i.e., like charges repel) and a larger radius is the result.
In contrast, when cations are formed, electrons are removed from the valence level (oxidation) producing an element having a greater number of protons than electrons. The larger number of protons will function to attract the electron cloud with a greater force that results in a contraction of atomic radius and a smaller spherical volume than the neutral unionized element.
To visualize, see attached chart that shows atomic and ionic radii before and after ionization of the elements.
Answer:
3–ethyl–4–methylhexane.
Explanation:
To name the above compound, do the following:
1. Determine the functional group of the compound.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound.
3. Identify the substituent group attached to the compound.
4. Give the substituent the lowest possible count.
5. Combine the above to name the compound.
Now, we shall name the compound given in the question above as follow:
1. The compound contains only single bond. Therefore, the compound belong to the alkane family.
2. The longest continuous carbon chain is 6 i.e hexane.
3. The substituent group attached are:
i. Methyl, CH3.
ii. Ethyl, CH2CH3.
4. we shall name the substituents alphabetically i.e ethly will come before methyl. Therefore,
Ethyl is located at carbon 3.
Methy is located at carbon 4.
5. Therefore, the name of the compound is:
3–ethyl–4–methylhexane.
Answer:
41.44 g
Explanation:
First of all, we must put down the equation of the reaction;

Number of moles of CaO = 33g/56 g/mol = 0.59 moles
Number of moles of H20 = 10g/18 g/mol = 0.56 moles
Since the reaction is in 1:1 mole ration, H2O is the limiting reactant
Hence;
mass of Ca(OH)2 produced = 0.56 moles * 74 g/mol = 41.44 g
Answer:
(i) specific heat
(ii) latent heat of vaporization
(iii) latent heat of fusion
Explanation:
i. Q = mcΔT; identify c.
Here, Q is heat, m is the mass, c is the specific heat and ΔT is the change in temperature.
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C is known as the specific heat.
ii. Q = mLvapor; identify Lvapor
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg liquid into 1 kg vapor at constant temperature.
iii. Q = mLfusion; identify Lfusion
Here, Q is the heat, m is the mass and L is the latent heat of fusion.
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg solid into 1 kg liquid at constant temperature.
Answer:
Electrons- 95
Protons- 95
Neutrons-146
Explanation:
An atoms is made up of three fundamental particles; electrons, protons and neutrons,
Americium belongs to the f block in the periodic table. It is an actinide element.
An atom of Am-241 contains 95 protons, 95 electrons and 146 neutrons.