Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)
Answer:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Explanation:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Answer:
1. C
2. C
3. A
4. C
5. True
6. C
Explanation:
1. C The answer is conduction because the heat was transferred through direct contact.
2. C The answer convection because the heat was transferred through a medium (liquid/gas).
3. A The answer is conduction because the heat was transferred through direct contact.
4. C The answer is radiation because the heat was transferred through thermal emission.
5. True. This is because the air that is warmed rises, causing the cool air to replace it. You can picture it like the scenario in question 2.
6. C