<h3>
Answer:</h3>
43.33 atm
<h3>
Explanation:</h3>
We are given;
Mass of C₆H₆ = 26.2 g
Volume of the container = 0.25 L
Temperature = 395 K
We are required to calculate the pressure inside the container;
First, we calculate the number of moles of C₆H₆
Molar mass of C₆H₆ = 78.1118 g/mol.
But; Moles = mass ÷ Molar mass
Moles of C₆H₆ = 26.2 g ÷ 78.1118 g/mol.
= 0.335 moles C₆H₆
Second, we calculate the pressure, using the ideal gas equation;
Using the ideal gas equation, PV = nRT , Where R is the ideal gas constant, 0.082057 L.atm/mol.K
Therefore;
P = nRT ÷ V
= (0.335 mol × 0.082057 × 395 K) ÷ 0.25 L
= 43.433 atm
Therefore, the pressure inside the container is 43.33 atm
Answer:
yes, they were
Explanation:
The history of the metric system began in the Age of Enlightenment with notions of length and weighttaken from natural ones, and decimal multiples and fractions of them. The system became the standard of France and Europe in half a century. Other dimensions with unity ratios[Note 1] were added, and it went on to be adopted by the world.
The chemical nature of Q sepharose which allows it to be used as an ion exchanger include the following: It is an insoluble matrix which is in form of micro beads. The bead are porous, which provides a large surface area within and outside them. This properties make it possible for Q sepharose to finely separate different organic molecules.<span />
Answer: 1.8 x 10^1 or the scientific e notation is: 1.8e1