Answer:
Help you with what? their is nothing!
Step-by-step explanation:
![\sqrt[8]{ {x}^{2} {y}^{6} } \\ \\ = ( {x}^{2} {y}^{6} )^{ \frac{1}{8} } \\ \\ = {x}^{2 \times \frac{1}{8}} {y}^{6\times \frac{1}{8}} \\ \\ = x^{\frac{1}{4}} {y}^{3\times \frac{1}{4}} \\ \\ = x^{\frac{1}{4}} {y}^{\frac{3}{4}} \\ \\ = \sqrt[4]{x {y}^{3} } \\](https://tex.z-dn.net/?f=%20%5Csqrt%5B8%5D%7B%20%7Bx%7D%5E%7B2%7D%20%20%7By%7D%5E%7B6%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%28%20%7Bx%7D%5E%7B2%7D%20%7By%7D%5E%7B6%7D%20%20%29%5E%7B%20%5Cfrac%7B1%7D%7B8%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%7Bx%7D%5E%7B2%20%5Ctimes%20%5Cfrac%7B1%7D%7B8%7D%7D%20%7By%7D%5E%7B6%5Ctimes%20%5Cfrac%7B1%7D%7B8%7D%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%7By%7D%5E%7B3%5Ctimes%20%5Cfrac%7B1%7D%7B4%7D%7D%20%20%5C%5C%20%20%5C%5C%20%20%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%7By%7D%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%20%20%5C%5C%20%20%5C%5C%20%20%20%3D%20%20%5Csqrt%5B4%5D%7Bx%20%7By%7D%5E%7B3%7D%20%7D%20%20%5C%5C%20)
<span>1200 = 5000*4r
1200/20000 = r = .06 0r 6%</span>
Your balance would be 35, I think
Answer:
a) 3.128
b) Yes, it is an outerlier
Step-by-step explanation:
The standardized z-score for a particular sample can be determined via the following expression:
z_i = {x_i -\bar x}/{s}
Where;
\bar x = sample means
s = sample standard deviation
Given data:
the mean shipment thickness (\bar x) = 0.2731 mm
With the standardized deviation (s) = 0.000959 mm
The standardized z-score for a certain shipment with a diameter x_i= 0.2761 mm can be determined via the following previous expression
z_i = {x_i -\bar x}/{s}
z_i = {0.2761-0.2731}/{ 0.000959}
z_i = 3.128
b)
From the standardized z-score
If [z_i < 2]; it typically implies that the data is unusual
If [z_i > 2]; it means that the data value is an outerlier
However, since our z_i > 3 (I.e it is 3.128), we conclude that it is an outerlier.