The brain's outermost cellular layer is called the cortex.
<h2>Membrane potential </h2>
Explanation:
- Membrane potential represents charge difference across the membrane, all biological cells are negative inside (cytoplasm) and positive outside (due to difference in ionic distribution)
- In a typical neuron cell membrane potential of cytoplasm is negative at rest (when no stimulus is applied) hence called resting membrane potential
- Resting membrane potential of excitable cells is established by Na+ and K+pump
- Repolarization starts with the efflux of K+ by the opening of voltage gated K+ channels
- Voltage gated K+ channels starts to open when voltage gated Na+ channels becomes inactive
- Hyperpolarization occurs due to excessive efflux of K+ by voltage gated K+ channels
- Additional efflux of K+ occurs due to slow inactivation of voltage gated K+ channels
Answer:
Primary active transport
Explanation:
Primary active transport is the transport in which molecules are moved against their gradient, with direct use of ATP as an energy source. Na/K pump is an example of primary active transport: Na ions are transported out of cell, K ions are moved into the cell. This pumps maintain concentrations of those ions and also creates voltage across the cell membrane, which can be used for the secondary active transport of other molecules (e.g. glucose).
Analogies are the result of convergent evolution. Interestingly, though bird and bat wings are analogous as wings, as forelimbs they are homologous. Birds and bats did not inherit wings from a common ancestor with wings, but they did inherit forelimbs from a common ancestor with forelimbs.