Let the given complex number
z = x + ix = 
We have to find the standard form of complex number.
Solution:
∴ x + iy = 
Rationalising numerator part of complex number, we get
x + iy = 
⇒ x + iy = 
Using the algebraic identity:
(a + b)(a - b) =
- 
⇒ x + iy = 
⇒ x + iy =
[ ∵
]
⇒ x + iy =
⇒ x + iy =
⇒ x + iy =
⇒ x + iy = 1 - i
Thus, the given complex number in standard form as "1 - i".
#22 is Ian. #23.a. is 77%. b. is Yes. c. is 16.
Answer:
8x²−6xy+20x−15y
Step-by-step explanation:
(4x−3y)(2x+5)
=(4x+−3y)(2x+5)
=(4x)(2x)+(4x)(5)+(−3y)(2x)+(−3y)(5)
=8x²+20x−6xy−15y
=8x²−6xy+20x−15y
X=3
y=1
Use substitution method starting with the first equation substitute y in the second equation