Answer:
The answer to the question above is explained below
Explanation:
The reaction quotient, Q, is a measure of the relative amounts of reactants and products during a chemical reaction as it can be used to determine in which direction a reaction will proceed at a given point in time. Equilibrium constant is the numerical value of reaction quotient at the end of the reaction, when equilibrium is reached.
If Q = K then the system is already at equilibrium. If Q < Keq, the reaction will move toward the products to reach equilibrium. If Q > Keq, the reaction will move toward the reactants in order to reach equilibrium. Therefore, by comparing Q and K, we can determine the direction of a reaction.
Where Q= reaction quotient and Keq= equilibrium constant for the reaction.
The larger the equilibrium constant, the further the equilibrium lies toward the products. Reaction quotient is a quantity that changes as a reaction system approaches equilibrium.
We can determine the equilibrium constant based on equilibrium concentrations. K is the constant of a certain reaction when it is in equilibrium. Equilibrium occurs when there is a constant ratio between the concentration of the reactants and the products.
Answer:
The tennis ball.
Explanation:
Because the baseball is heavier, it requires more force to move it, whereas the tennis ball requires less force, so it will move more. Hope that makes sense!
The car's (average) acceleration would be

The car's position over time would be given by

so that after 2.4 seconds, the car will have traveled a distance of


Runner A because they completed it in a less amount of time
The answer is C because <span>this movement is caused by the heat in Earth and creates </span>convection currents. <span>Convection currents in the asthenosphere cause movement of Earth's tectonic plates. </span>