Answer:
The kinetic energy of the more massive ball is greater by a factor of 2.
Explanation:
By conservation of energy, we know that the initial energy = final energy. At first, the balls are dropped from a height with no initial velocity so their initial energy is all potential energy. When they reach the bottom, all their energy is kinetic energy. So all of their energy is changed from potential to kinetic energy. This means that the ball with greater potential energy will have a greater kinetic energy.
Potential energy = mgh. Since g = gravity is a constant and h = height is the same, the only difference is mass. Since mass is directly proportional to potential energy, the greater the mass, the greater the potential energy, so the more massive ball has a greater initial potential energy and will have a greater kinetic energy at the bottom.
Additionally, let B1 = lighter ball with mass m and let B2 = heavier ball with mass m2. Since we know that intial potential energy = final kinetic energy. We can rewrite it as potential energy = kinetic energy = mass * gravity constant * height. For B1, it is mgh and for B2 it is 2mgh, so B2's kinetic energy is twice that of B1.
Answer:
less
Explanation:
Sliding friction is always less than static friction. This is because in sliding friction, the bodies slide with each other and thus the effect of friction is not more. However, it does not happen in the case of static friction.
Answer:
1.4s
Explanation:
Given parameters:
Mass of ball = 2kg
Force = 8N
Time = 0.35s
Unknown:
Change in velocity = ?
Solution:
To solve this problem, we use the expression obtained from Newton's second law of motion which is shown below:
Ft = m(v - u)
So;
Ft = m Δv
F is the force
t is the time
m is the mass
Δv is the change in velocity
8 x 0.35 = 2 x Δv
Δv = 1.4s
Strength/magnitude would both work