Answer:
C. 8 units right and 5 units down
Step-by-step explanation:
since it's only a translation, take one point as an example. lets say the bottom right point on trapezoid P is point A, and the translated point on P' is A'. the coordinates of A are (-3,2) while the coordinates of A' are (5,-3). (-3+x,2+y)=(5,-3). -3+x=5, x=8; 2+y=-3, y=-5
Answer:
4sqrt(2) cm
Step-by-step explanation:
a^2 + b^2 = c^2
4^2 + 4^2 = c^2
32 = c^2
sqrt(32) = c
c = 4sqrt(2)
We know that the sum of the inner angles of any triangle is 180º
72º + (7x + 3)º + (3x + 5)º = 180º
72º + 7xº + 3º + 3xº + 5º = 180
7xº + 3xº = 180º - 72º - 3º - 5º
10xº = 100º


The sum of the external angle (9y + 1)º with inner angle (3x + 5) = 180 °, <span>Replace the measure of "x" found:
</span>
(9y + 1)º + (3x + 5)º = 180º
9yº + 1º + 3xº + 5º = 180º
9yº + 1º + 3.(10)º + 5º = 180º
9yº + 1º + 30º + 5º = 180º
9yº = 180º - 1º - 30º - 5º
9yº = 144º


Answer:
<span>
The measures of "x" and "y" are respectively: 10º and 16º</span>
Answer:
Inequality Form:
r ≥ 7
Interval Notation:
[7, ∞)
Step-by-step explanation:
−1.3 ≥ 2.9 − 0.6r
Rewrite so r is on the left side of the inequality.
2.9 − 0.6r ≤ −1.3
Move all terms not containing r to the right side of the inequality.
Subtract 2.9 from both sides of the inequality.
−0.6r ≤ −1.3 − 2.9
Subtract 2.9 from −1.3.
−0.6r ≤ −4.2
Divide each term by −0.6 and simplify.
Divide each term in −0.6r ≤ −4.2 by −0.6. When multiplying or dividing both sides of an
inequality by a negative value, f lip the direction of the inequality sign.
−0.6r
/−0.6 ≥ −4.2
/−0.6
Cancel the common factor of −0.6.
−4.2
r ≥ ______
−0.6
Divide −4.2 by −0.6.
r ≥ 7
The result can be shown in multiple forms.
Inequality Form:
r ≥ 7
Interval Notation:
[7, ∞)